Whakaoti mō x
x=\frac{\sqrt{10}}{6}-\frac{1}{3}\approx 0.193712943
x=-\frac{\sqrt{10}}{6}-\frac{1}{3}\approx -0.86037961
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(6x+2\right)^{2}-10+10=10
Me tāpiri 10 ki ngā taha e rua o te whārite.
\left(6x+2\right)^{2}=10
Mā te tango i te 10 i a ia ake anō ka toe ko te 0.
6x+2=\sqrt{10} 6x+2=-\sqrt{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
6x+2-2=\sqrt{10}-2 6x+2-2=-\sqrt{10}-2
Me tango 2 mai i ngā taha e rua o te whārite.
6x=\sqrt{10}-2 6x=-\sqrt{10}-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
6x=\sqrt{10}-2
Tango 2 mai i \sqrt{10}.
6x=-\sqrt{10}-2
Tango 2 mai i -\sqrt{10}.
\frac{6x}{6}=\frac{\sqrt{10}-2}{6} \frac{6x}{6}=\frac{-\sqrt{10}-2}{6}
Whakawehea ngā taha e rua ki te 6.
x=\frac{\sqrt{10}-2}{6} x=\frac{-\sqrt{10}-2}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x=\frac{\sqrt{10}}{6}-\frac{1}{3}
Whakawehe \sqrt{10}-2 ki te 6.
x=-\frac{\sqrt{10}}{6}-\frac{1}{3}
Whakawehe -\sqrt{10}-2 ki te 6.
x=\frac{\sqrt{10}}{6}-\frac{1}{3} x=-\frac{\sqrt{10}}{6}-\frac{1}{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}