Whakaoti mō x
x=-\frac{2}{5}=-0.4
x=\frac{3}{5}=0.6
Graph
Tohaina
Kua tāruatia ki te papatopenga
25x^{2}+10x+1-3\left(5x+1\right)-4=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5x+1\right)^{2}.
25x^{2}+10x+1-15x-3-4=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 5x+1.
25x^{2}-5x+1-3-4=0
Pahekotia te 10x me -15x, ka -5x.
25x^{2}-5x-2-4=0
Tangohia te 3 i te 1, ka -2.
25x^{2}-5x-6=0
Tangohia te 4 i te -2, ka -6.
a+b=-5 ab=25\left(-6\right)=-150
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 25x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-150 2,-75 3,-50 5,-30 6,-25 10,-15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -150.
1-150=-149 2-75=-73 3-50=-47 5-30=-25 6-25=-19 10-15=-5
Tātaihia te tapeke mō ia takirua.
a=-15 b=10
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(25x^{2}-15x\right)+\left(10x-6\right)
Tuhia anō te 25x^{2}-5x-6 hei \left(25x^{2}-15x\right)+\left(10x-6\right).
5x\left(5x-3\right)+2\left(5x-3\right)
Tauwehea te 5x i te tuatahi me te 2 i te rōpū tuarua.
\left(5x-3\right)\left(5x+2\right)
Whakatauwehea atu te kīanga pātahi 5x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{3}{5} x=-\frac{2}{5}
Hei kimi otinga whārite, me whakaoti te 5x-3=0 me te 5x+2=0.
25x^{2}+10x+1-3\left(5x+1\right)-4=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5x+1\right)^{2}.
25x^{2}+10x+1-15x-3-4=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 5x+1.
25x^{2}-5x+1-3-4=0
Pahekotia te 10x me -15x, ka -5x.
25x^{2}-5x-2-4=0
Tangohia te 3 i te 1, ka -2.
25x^{2}-5x-6=0
Tangohia te 4 i te -2, ka -6.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 25\left(-6\right)}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, -5 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 25\left(-6\right)}}{2\times 25}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-100\left(-6\right)}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{-\left(-5\right)±\sqrt{25+600}}{2\times 25}
Whakareatia -100 ki te -6.
x=\frac{-\left(-5\right)±\sqrt{625}}{2\times 25}
Tāpiri 25 ki te 600.
x=\frac{-\left(-5\right)±25}{2\times 25}
Tuhia te pūtakerua o te 625.
x=\frac{5±25}{2\times 25}
Ko te tauaro o -5 ko 5.
x=\frac{5±25}{50}
Whakareatia 2 ki te 25.
x=\frac{30}{50}
Nā, me whakaoti te whārite x=\frac{5±25}{50} ina he tāpiri te ±. Tāpiri 5 ki te 25.
x=\frac{3}{5}
Whakahekea te hautanga \frac{30}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=-\frac{20}{50}
Nā, me whakaoti te whārite x=\frac{5±25}{50} ina he tango te ±. Tango 25 mai i 5.
x=-\frac{2}{5}
Whakahekea te hautanga \frac{-20}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=\frac{3}{5} x=-\frac{2}{5}
Kua oti te whārite te whakatau.
25x^{2}+10x+1-3\left(5x+1\right)-4=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5x+1\right)^{2}.
25x^{2}+10x+1-15x-3-4=0
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 5x+1.
25x^{2}-5x+1-3-4=0
Pahekotia te 10x me -15x, ka -5x.
25x^{2}-5x-2-4=0
Tangohia te 3 i te 1, ka -2.
25x^{2}-5x-6=0
Tangohia te 4 i te -2, ka -6.
25x^{2}-5x=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{25x^{2}-5x}{25}=\frac{6}{25}
Whakawehea ngā taha e rua ki te 25.
x^{2}+\left(-\frac{5}{25}\right)x=\frac{6}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
x^{2}-\frac{1}{5}x=\frac{6}{25}
Whakahekea te hautanga \frac{-5}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-\frac{1}{5}x+\left(-\frac{1}{10}\right)^{2}=\frac{6}{25}+\left(-\frac{1}{10}\right)^{2}
Whakawehea te -\frac{1}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{10}. Nā, tāpiria te pūrua o te -\frac{1}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{6}{25}+\frac{1}{100}
Pūruatia -\frac{1}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{1}{4}
Tāpiri \frac{6}{25} ki te \frac{1}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{10}\right)^{2}=\frac{1}{4}
Tauwehea x^{2}-\frac{1}{5}x+\frac{1}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{10}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{10}=\frac{1}{2} x-\frac{1}{10}=-\frac{1}{2}
Whakarūnātia.
x=\frac{3}{5} x=-\frac{2}{5}
Me tāpiri \frac{1}{10} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}