Whakaoti mō x
x=\frac{\sqrt{129}+2}{25}\approx 0.534312668
x=\frac{2-\sqrt{129}}{25}\approx -0.374312668
Graph
Tohaina
Kua tāruatia ki te papatopenga
5^{2}x^{2}-4x-5=0
Whakarohaina te \left(5x\right)^{2}.
25x^{2}-4x-5=0
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 25\left(-5\right)}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, -4 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 25\left(-5\right)}}{2\times 25}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-100\left(-5\right)}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{-\left(-4\right)±\sqrt{16+500}}{2\times 25}
Whakareatia -100 ki te -5.
x=\frac{-\left(-4\right)±\sqrt{516}}{2\times 25}
Tāpiri 16 ki te 500.
x=\frac{-\left(-4\right)±2\sqrt{129}}{2\times 25}
Tuhia te pūtakerua o te 516.
x=\frac{4±2\sqrt{129}}{2\times 25}
Ko te tauaro o -4 ko 4.
x=\frac{4±2\sqrt{129}}{50}
Whakareatia 2 ki te 25.
x=\frac{2\sqrt{129}+4}{50}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{129}}{50} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{129}.
x=\frac{\sqrt{129}+2}{25}
Whakawehe 4+2\sqrt{129} ki te 50.
x=\frac{4-2\sqrt{129}}{50}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{129}}{50} ina he tango te ±. Tango 2\sqrt{129} mai i 4.
x=\frac{2-\sqrt{129}}{25}
Whakawehe 4-2\sqrt{129} ki te 50.
x=\frac{\sqrt{129}+2}{25} x=\frac{2-\sqrt{129}}{25}
Kua oti te whārite te whakatau.
5^{2}x^{2}-4x-5=0
Whakarohaina te \left(5x\right)^{2}.
25x^{2}-4x-5=0
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
25x^{2}-4x=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{25x^{2}-4x}{25}=\frac{5}{25}
Whakawehea ngā taha e rua ki te 25.
x^{2}-\frac{4}{25}x=\frac{5}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
x^{2}-\frac{4}{25}x=\frac{1}{5}
Whakahekea te hautanga \frac{5}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-\frac{4}{25}x+\left(-\frac{2}{25}\right)^{2}=\frac{1}{5}+\left(-\frac{2}{25}\right)^{2}
Whakawehea te -\frac{4}{25}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{25}. Nā, tāpiria te pūrua o te -\frac{2}{25} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{4}{25}x+\frac{4}{625}=\frac{1}{5}+\frac{4}{625}
Pūruatia -\frac{2}{25} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{4}{25}x+\frac{4}{625}=\frac{129}{625}
Tāpiri \frac{1}{5} ki te \frac{4}{625} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{2}{25}\right)^{2}=\frac{129}{625}
Tauwehea x^{2}-\frac{4}{25}x+\frac{4}{625}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{25}\right)^{2}}=\sqrt{\frac{129}{625}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{2}{25}=\frac{\sqrt{129}}{25} x-\frac{2}{25}=-\frac{\sqrt{129}}{25}
Whakarūnātia.
x=\frac{\sqrt{129}+2}{25} x=\frac{2-\sqrt{129}}{25}
Me tāpiri \frac{2}{25} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}