Whakaoti mō x (complex solution)
x=\frac{-1+\sqrt{15}i}{8}\approx -0.125+0.484122918i
x=\frac{-\sqrt{15}i-1}{8}\approx -0.125-0.484122918i
Graph
Tohaina
Kua tāruatia ki te papatopenga
4^{2}x^{2}+4x+4=0
Whakarohaina te \left(4x\right)^{2}.
16x^{2}+4x+4=0
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
x=\frac{-4±\sqrt{4^{2}-4\times 16\times 4}}{2\times 16}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 16 mō a, 4 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 16\times 4}}{2\times 16}
Pūrua 4.
x=\frac{-4±\sqrt{16-64\times 4}}{2\times 16}
Whakareatia -4 ki te 16.
x=\frac{-4±\sqrt{16-256}}{2\times 16}
Whakareatia -64 ki te 4.
x=\frac{-4±\sqrt{-240}}{2\times 16}
Tāpiri 16 ki te -256.
x=\frac{-4±4\sqrt{15}i}{2\times 16}
Tuhia te pūtakerua o te -240.
x=\frac{-4±4\sqrt{15}i}{32}
Whakareatia 2 ki te 16.
x=\frac{-4+4\sqrt{15}i}{32}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{15}i}{32} ina he tāpiri te ±. Tāpiri -4 ki te 4i\sqrt{15}.
x=\frac{-1+\sqrt{15}i}{8}
Whakawehe -4+4i\sqrt{15} ki te 32.
x=\frac{-4\sqrt{15}i-4}{32}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{15}i}{32} ina he tango te ±. Tango 4i\sqrt{15} mai i -4.
x=\frac{-\sqrt{15}i-1}{8}
Whakawehe -4-4i\sqrt{15} ki te 32.
x=\frac{-1+\sqrt{15}i}{8} x=\frac{-\sqrt{15}i-1}{8}
Kua oti te whārite te whakatau.
4^{2}x^{2}+4x+4=0
Whakarohaina te \left(4x\right)^{2}.
16x^{2}+4x+4=0
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16x^{2}+4x=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{16x^{2}+4x}{16}=-\frac{4}{16}
Whakawehea ngā taha e rua ki te 16.
x^{2}+\frac{4}{16}x=-\frac{4}{16}
Mā te whakawehe ki te 16 ka wetekia te whakareanga ki te 16.
x^{2}+\frac{1}{4}x=-\frac{4}{16}
Whakahekea te hautanga \frac{4}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}+\frac{1}{4}x=-\frac{1}{4}
Whakahekea te hautanga \frac{-4}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=-\frac{1}{4}+\left(\frac{1}{8}\right)^{2}
Whakawehea te \frac{1}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{8}. Nā, tāpiria te pūrua o te \frac{1}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{4}x+\frac{1}{64}=-\frac{1}{4}+\frac{1}{64}
Pūruatia \frac{1}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{4}x+\frac{1}{64}=-\frac{15}{64}
Tāpiri -\frac{1}{4} ki te \frac{1}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{8}\right)^{2}=-\frac{15}{64}
Tauwehea x^{2}+\frac{1}{4}x+\frac{1}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{-\frac{15}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{8}=\frac{\sqrt{15}i}{8} x+\frac{1}{8}=-\frac{\sqrt{15}i}{8}
Whakarūnātia.
x=\frac{-1+\sqrt{15}i}{8} x=\frac{-\sqrt{15}i-1}{8}
Me tango \frac{1}{8} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}