Whakaoti mō x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
x = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x^{2}-24x+16=9x-12
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-4\right)^{2}.
9x^{2}-24x+16-9x=-12
Tangohia te 9x mai i ngā taha e rua.
9x^{2}-33x+16=-12
Pahekotia te -24x me -9x, ka -33x.
9x^{2}-33x+16+12=0
Me tāpiri te 12 ki ngā taha e rua.
9x^{2}-33x+28=0
Tāpirihia te 16 ki te 12, ka 28.
a+b=-33 ab=9\times 28=252
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 9x^{2}+ax+bx+28. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-252 -2,-126 -3,-84 -4,-63 -6,-42 -7,-36 -9,-28 -12,-21 -14,-18
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 252.
-1-252=-253 -2-126=-128 -3-84=-87 -4-63=-67 -6-42=-48 -7-36=-43 -9-28=-37 -12-21=-33 -14-18=-32
Tātaihia te tapeke mō ia takirua.
a=-21 b=-12
Ko te otinga te takirua ka hoatu i te tapeke -33.
\left(9x^{2}-21x\right)+\left(-12x+28\right)
Tuhia anō te 9x^{2}-33x+28 hei \left(9x^{2}-21x\right)+\left(-12x+28\right).
3x\left(3x-7\right)-4\left(3x-7\right)
Tauwehea te 3x i te tuatahi me te -4 i te rōpū tuarua.
\left(3x-7\right)\left(3x-4\right)
Whakatauwehea atu te kīanga pātahi 3x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{7}{3} x=\frac{4}{3}
Hei kimi otinga whārite, me whakaoti te 3x-7=0 me te 3x-4=0.
9x^{2}-24x+16=9x-12
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-4\right)^{2}.
9x^{2}-24x+16-9x=-12
Tangohia te 9x mai i ngā taha e rua.
9x^{2}-33x+16=-12
Pahekotia te -24x me -9x, ka -33x.
9x^{2}-33x+16+12=0
Me tāpiri te 12 ki ngā taha e rua.
9x^{2}-33x+28=0
Tāpirihia te 16 ki te 12, ka 28.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 9\times 28}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -33 mō b, me 28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-33\right)±\sqrt{1089-4\times 9\times 28}}{2\times 9}
Pūrua -33.
x=\frac{-\left(-33\right)±\sqrt{1089-36\times 28}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-33\right)±\sqrt{1089-1008}}{2\times 9}
Whakareatia -36 ki te 28.
x=\frac{-\left(-33\right)±\sqrt{81}}{2\times 9}
Tāpiri 1089 ki te -1008.
x=\frac{-\left(-33\right)±9}{2\times 9}
Tuhia te pūtakerua o te 81.
x=\frac{33±9}{2\times 9}
Ko te tauaro o -33 ko 33.
x=\frac{33±9}{18}
Whakareatia 2 ki te 9.
x=\frac{42}{18}
Nā, me whakaoti te whārite x=\frac{33±9}{18} ina he tāpiri te ±. Tāpiri 33 ki te 9.
x=\frac{7}{3}
Whakahekea te hautanga \frac{42}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{24}{18}
Nā, me whakaoti te whārite x=\frac{33±9}{18} ina he tango te ±. Tango 9 mai i 33.
x=\frac{4}{3}
Whakahekea te hautanga \frac{24}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{7}{3} x=\frac{4}{3}
Kua oti te whārite te whakatau.
9x^{2}-24x+16=9x-12
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-4\right)^{2}.
9x^{2}-24x+16-9x=-12
Tangohia te 9x mai i ngā taha e rua.
9x^{2}-33x+16=-12
Pahekotia te -24x me -9x, ka -33x.
9x^{2}-33x=-12-16
Tangohia te 16 mai i ngā taha e rua.
9x^{2}-33x=-28
Tangohia te 16 i te -12, ka -28.
\frac{9x^{2}-33x}{9}=-\frac{28}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\left(-\frac{33}{9}\right)x=-\frac{28}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}-\frac{11}{3}x=-\frac{28}{9}
Whakahekea te hautanga \frac{-33}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{11}{3}x+\left(-\frac{11}{6}\right)^{2}=-\frac{28}{9}+\left(-\frac{11}{6}\right)^{2}
Whakawehea te -\frac{11}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{6}. Nā, tāpiria te pūrua o te -\frac{11}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{11}{3}x+\frac{121}{36}=-\frac{28}{9}+\frac{121}{36}
Pūruatia -\frac{11}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{11}{3}x+\frac{121}{36}=\frac{1}{4}
Tāpiri -\frac{28}{9} ki te \frac{121}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{11}{6}\right)^{2}=\frac{1}{4}
Tauwehea x^{2}-\frac{11}{3}x+\frac{121}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{6}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{6}=\frac{1}{2} x-\frac{11}{6}=-\frac{1}{2}
Whakarūnātia.
x=\frac{7}{3} x=\frac{4}{3}
Me tāpiri \frac{11}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}