Whakaoti mō x
x = -\frac{8}{3} = -2\frac{2}{3} \approx -2.666666667
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
{ \left(3x+5 \right) }^{ 2 } +5 \left( 3x+5 \right) +6=0
Tohaina
Kua tāruatia ki te papatopenga
9x^{2}+30x+25+5\left(3x+5\right)+6=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+5\right)^{2}.
9x^{2}+30x+25+15x+25+6=0
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 3x+5.
9x^{2}+45x+25+25+6=0
Pahekotia te 30x me 15x, ka 45x.
9x^{2}+45x+50+6=0
Tāpirihia te 25 ki te 25, ka 50.
9x^{2}+45x+56=0
Tāpirihia te 50 ki te 6, ka 56.
a+b=45 ab=9\times 56=504
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 9x^{2}+ax+bx+56. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,504 2,252 3,168 4,126 6,84 7,72 8,63 9,56 12,42 14,36 18,28 21,24
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 504.
1+504=505 2+252=254 3+168=171 4+126=130 6+84=90 7+72=79 8+63=71 9+56=65 12+42=54 14+36=50 18+28=46 21+24=45
Tātaihia te tapeke mō ia takirua.
a=21 b=24
Ko te otinga te takirua ka hoatu i te tapeke 45.
\left(9x^{2}+21x\right)+\left(24x+56\right)
Tuhia anō te 9x^{2}+45x+56 hei \left(9x^{2}+21x\right)+\left(24x+56\right).
3x\left(3x+7\right)+8\left(3x+7\right)
Tauwehea te 3x i te tuatahi me te 8 i te rōpū tuarua.
\left(3x+7\right)\left(3x+8\right)
Whakatauwehea atu te kīanga pātahi 3x+7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{7}{3} x=-\frac{8}{3}
Hei kimi otinga whārite, me whakaoti te 3x+7=0 me te 3x+8=0.
9x^{2}+30x+25+5\left(3x+5\right)+6=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+5\right)^{2}.
9x^{2}+30x+25+15x+25+6=0
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 3x+5.
9x^{2}+45x+25+25+6=0
Pahekotia te 30x me 15x, ka 45x.
9x^{2}+45x+50+6=0
Tāpirihia te 25 ki te 25, ka 50.
9x^{2}+45x+56=0
Tāpirihia te 50 ki te 6, ka 56.
x=\frac{-45±\sqrt{45^{2}-4\times 9\times 56}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 45 mō b, me 56 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±\sqrt{2025-4\times 9\times 56}}{2\times 9}
Pūrua 45.
x=\frac{-45±\sqrt{2025-36\times 56}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-45±\sqrt{2025-2016}}{2\times 9}
Whakareatia -36 ki te 56.
x=\frac{-45±\sqrt{9}}{2\times 9}
Tāpiri 2025 ki te -2016.
x=\frac{-45±3}{2\times 9}
Tuhia te pūtakerua o te 9.
x=\frac{-45±3}{18}
Whakareatia 2 ki te 9.
x=-\frac{42}{18}
Nā, me whakaoti te whārite x=\frac{-45±3}{18} ina he tāpiri te ±. Tāpiri -45 ki te 3.
x=-\frac{7}{3}
Whakahekea te hautanga \frac{-42}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{48}{18}
Nā, me whakaoti te whārite x=\frac{-45±3}{18} ina he tango te ±. Tango 3 mai i -45.
x=-\frac{8}{3}
Whakahekea te hautanga \frac{-48}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{7}{3} x=-\frac{8}{3}
Kua oti te whārite te whakatau.
9x^{2}+30x+25+5\left(3x+5\right)+6=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+5\right)^{2}.
9x^{2}+30x+25+15x+25+6=0
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 3x+5.
9x^{2}+45x+25+25+6=0
Pahekotia te 30x me 15x, ka 45x.
9x^{2}+45x+50+6=0
Tāpirihia te 25 ki te 25, ka 50.
9x^{2}+45x+56=0
Tāpirihia te 50 ki te 6, ka 56.
9x^{2}+45x=-56
Tangohia te 56 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{9x^{2}+45x}{9}=-\frac{56}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{45}{9}x=-\frac{56}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+5x=-\frac{56}{9}
Whakawehe 45 ki te 9.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-\frac{56}{9}+\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+5x+\frac{25}{4}=-\frac{56}{9}+\frac{25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+5x+\frac{25}{4}=\frac{1}{36}
Tāpiri -\frac{56}{9} ki te \frac{25}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{36}
Tauwehea x^{2}+5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{2}=\frac{1}{6} x+\frac{5}{2}=-\frac{1}{6}
Whakarūnātia.
x=-\frac{7}{3} x=-\frac{8}{3}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}