Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(3x+2\right)\left(x+3\right)=x+4
Tātaihia te 3x+2 mā te pū o 1, kia riro ko 3x+2.
3x^{2}+11x+6=x+4
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+2 ki te x+3 ka whakakotahi i ngā kupu rite.
3x^{2}+11x+6-x=4
Tangohia te x mai i ngā taha e rua.
3x^{2}+10x+6=4
Pahekotia te 11x me -x, ka 10x.
3x^{2}+10x+6-4=0
Tangohia te 4 mai i ngā taha e rua.
3x^{2}+10x+2=0
Tangohia te 4 i te 6, ka 2.
x=\frac{-10±\sqrt{10^{2}-4\times 3\times 2}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 10 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 3\times 2}}{2\times 3}
Pūrua 10.
x=\frac{-10±\sqrt{100-12\times 2}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-10±\sqrt{100-24}}{2\times 3}
Whakareatia -12 ki te 2.
x=\frac{-10±\sqrt{76}}{2\times 3}
Tāpiri 100 ki te -24.
x=\frac{-10±2\sqrt{19}}{2\times 3}
Tuhia te pūtakerua o te 76.
x=\frac{-10±2\sqrt{19}}{6}
Whakareatia 2 ki te 3.
x=\frac{2\sqrt{19}-10}{6}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{19}}{6} ina he tāpiri te ±. Tāpiri -10 ki te 2\sqrt{19}.
x=\frac{\sqrt{19}-5}{3}
Whakawehe -10+2\sqrt{19} ki te 6.
x=\frac{-2\sqrt{19}-10}{6}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{19}}{6} ina he tango te ±. Tango 2\sqrt{19} mai i -10.
x=\frac{-\sqrt{19}-5}{3}
Whakawehe -10-2\sqrt{19} ki te 6.
x=\frac{\sqrt{19}-5}{3} x=\frac{-\sqrt{19}-5}{3}
Kua oti te whārite te whakatau.
\left(3x+2\right)\left(x+3\right)=x+4
Tātaihia te 3x+2 mā te pū o 1, kia riro ko 3x+2.
3x^{2}+11x+6=x+4
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+2 ki te x+3 ka whakakotahi i ngā kupu rite.
3x^{2}+11x+6-x=4
Tangohia te x mai i ngā taha e rua.
3x^{2}+10x+6=4
Pahekotia te 11x me -x, ka 10x.
3x^{2}+10x=4-6
Tangohia te 6 mai i ngā taha e rua.
3x^{2}+10x=-2
Tangohia te 6 i te 4, ka -2.
\frac{3x^{2}+10x}{3}=-\frac{2}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{10}{3}x=-\frac{2}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=-\frac{2}{3}+\left(\frac{5}{3}\right)^{2}
Whakawehea te \frac{10}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{3}. Nā, tāpiria te pūrua o te \frac{5}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{10}{3}x+\frac{25}{9}=-\frac{2}{3}+\frac{25}{9}
Pūruatia \frac{5}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{19}{9}
Tāpiri -\frac{2}{3} ki te \frac{25}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{3}\right)^{2}=\frac{19}{9}
Tauwehea x^{2}+\frac{10}{3}x+\frac{25}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{19}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{3}=\frac{\sqrt{19}}{3} x+\frac{5}{3}=-\frac{\sqrt{19}}{3}
Whakarūnātia.
x=\frac{\sqrt{19}-5}{3} x=\frac{-\sqrt{19}-5}{3}
Me tango \frac{5}{3} mai i ngā taha e rua o te whārite.