Whakaoti mō x
x=\frac{\sqrt{7}-4}{9}\approx -0.150472077
x=\frac{-\sqrt{7}-4}{9}\approx -0.738416812
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x^{2}+6x+1=-2x
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+1\right)^{2}.
9x^{2}+6x+1+2x=0
Me tāpiri te 2x ki ngā taha e rua.
9x^{2}+8x+1=0
Pahekotia te 6x me 2x, ka 8x.
x=\frac{-8±\sqrt{8^{2}-4\times 9}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 8 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 9}}{2\times 9}
Pūrua 8.
x=\frac{-8±\sqrt{64-36}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-8±\sqrt{28}}{2\times 9}
Tāpiri 64 ki te -36.
x=\frac{-8±2\sqrt{7}}{2\times 9}
Tuhia te pūtakerua o te 28.
x=\frac{-8±2\sqrt{7}}{18}
Whakareatia 2 ki te 9.
x=\frac{2\sqrt{7}-8}{18}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{7}}{18} ina he tāpiri te ±. Tāpiri -8 ki te 2\sqrt{7}.
x=\frac{\sqrt{7}-4}{9}
Whakawehe -8+2\sqrt{7} ki te 18.
x=\frac{-2\sqrt{7}-8}{18}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{7}}{18} ina he tango te ±. Tango 2\sqrt{7} mai i -8.
x=\frac{-\sqrt{7}-4}{9}
Whakawehe -8-2\sqrt{7} ki te 18.
x=\frac{\sqrt{7}-4}{9} x=\frac{-\sqrt{7}-4}{9}
Kua oti te whārite te whakatau.
9x^{2}+6x+1=-2x
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+1\right)^{2}.
9x^{2}+6x+1+2x=0
Me tāpiri te 2x ki ngā taha e rua.
9x^{2}+8x+1=0
Pahekotia te 6x me 2x, ka 8x.
9x^{2}+8x=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{9x^{2}+8x}{9}=-\frac{1}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{8}{9}x=-\frac{1}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+\frac{8}{9}x+\left(\frac{4}{9}\right)^{2}=-\frac{1}{9}+\left(\frac{4}{9}\right)^{2}
Whakawehea te \frac{8}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{4}{9}. Nā, tāpiria te pūrua o te \frac{4}{9} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{8}{9}x+\frac{16}{81}=-\frac{1}{9}+\frac{16}{81}
Pūruatia \frac{4}{9} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{8}{9}x+\frac{16}{81}=\frac{7}{81}
Tāpiri -\frac{1}{9} ki te \frac{16}{81} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{4}{9}\right)^{2}=\frac{7}{81}
Tauwehea x^{2}+\frac{8}{9}x+\frac{16}{81}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{9}\right)^{2}}=\sqrt{\frac{7}{81}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{4}{9}=\frac{\sqrt{7}}{9} x+\frac{4}{9}=-\frac{\sqrt{7}}{9}
Whakarūnātia.
x=\frac{\sqrt{7}-4}{9} x=\frac{-\sqrt{7}-4}{9}
Me tango \frac{4}{9} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}