Whakaoti mō x (complex solution)
x=\frac{2+\sqrt{5}i}{9}\approx 0.222222222+0.248451997i
x=\frac{-\sqrt{5}i+2}{9}\approx 0.222222222-0.248451997i
Graph
Tohaina
Kua tāruatia ki te papatopenga
3^{2}x^{2}-4x+1=0
Whakarohaina te \left(3x\right)^{2}.
9x^{2}-4x+1=0
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 9}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -4 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 9}}{2\times 9}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-36}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-4\right)±\sqrt{-20}}{2\times 9}
Tāpiri 16 ki te -36.
x=\frac{-\left(-4\right)±2\sqrt{5}i}{2\times 9}
Tuhia te pūtakerua o te -20.
x=\frac{4±2\sqrt{5}i}{2\times 9}
Ko te tauaro o -4 ko 4.
x=\frac{4±2\sqrt{5}i}{18}
Whakareatia 2 ki te 9.
x=\frac{4+2\sqrt{5}i}{18}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{5}i}{18} ina he tāpiri te ±. Tāpiri 4 ki te 2i\sqrt{5}.
x=\frac{2+\sqrt{5}i}{9}
Whakawehe 4+2i\sqrt{5} ki te 18.
x=\frac{-2\sqrt{5}i+4}{18}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{5}i}{18} ina he tango te ±. Tango 2i\sqrt{5} mai i 4.
x=\frac{-\sqrt{5}i+2}{9}
Whakawehe 4-2i\sqrt{5} ki te 18.
x=\frac{2+\sqrt{5}i}{9} x=\frac{-\sqrt{5}i+2}{9}
Kua oti te whārite te whakatau.
3^{2}x^{2}-4x+1=0
Whakarohaina te \left(3x\right)^{2}.
9x^{2}-4x+1=0
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9x^{2}-4x=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{9x^{2}-4x}{9}=-\frac{1}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}-\frac{4}{9}x=-\frac{1}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}-\frac{4}{9}x+\left(-\frac{2}{9}\right)^{2}=-\frac{1}{9}+\left(-\frac{2}{9}\right)^{2}
Whakawehea te -\frac{4}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{9}. Nā, tāpiria te pūrua o te -\frac{2}{9} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{4}{9}x+\frac{4}{81}=-\frac{1}{9}+\frac{4}{81}
Pūruatia -\frac{2}{9} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{4}{9}x+\frac{4}{81}=-\frac{5}{81}
Tāpiri -\frac{1}{9} ki te \frac{4}{81} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{2}{9}\right)^{2}=-\frac{5}{81}
Tauwehea x^{2}-\frac{4}{9}x+\frac{4}{81}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{9}\right)^{2}}=\sqrt{-\frac{5}{81}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{2}{9}=\frac{\sqrt{5}i}{9} x-\frac{2}{9}=-\frac{\sqrt{5}i}{9}
Whakarūnātia.
x=\frac{2+\sqrt{5}i}{9} x=\frac{-\sqrt{5}i+2}{9}
Me tāpiri \frac{2}{9} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}