Whakaoti mō x
x=1
x=\frac{4}{9}\approx 0.444444444
Graph
Tohaina
Kua tāruatia ki te papatopenga
3^{2}x^{2}-13x+4=0
Whakarohaina te \left(3x\right)^{2}.
9x^{2}-13x+4=0
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
a+b=-13 ab=9\times 4=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 9x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tātaihia te tapeke mō ia takirua.
a=-9 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(9x^{2}-9x\right)+\left(-4x+4\right)
Tuhia anō te 9x^{2}-13x+4 hei \left(9x^{2}-9x\right)+\left(-4x+4\right).
9x\left(x-1\right)-4\left(x-1\right)
Tauwehea te 9x i te tuatahi me te -4 i te rōpū tuarua.
\left(x-1\right)\left(9x-4\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=\frac{4}{9}
Hei kimi otinga whārite, me whakaoti te x-1=0 me te 9x-4=0.
3^{2}x^{2}-13x+4=0
Whakarohaina te \left(3x\right)^{2}.
9x^{2}-13x+4=0
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 9\times 4}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -13 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 9\times 4}}{2\times 9}
Pūrua -13.
x=\frac{-\left(-13\right)±\sqrt{169-36\times 4}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-13\right)±\sqrt{169-144}}{2\times 9}
Whakareatia -36 ki te 4.
x=\frac{-\left(-13\right)±\sqrt{25}}{2\times 9}
Tāpiri 169 ki te -144.
x=\frac{-\left(-13\right)±5}{2\times 9}
Tuhia te pūtakerua o te 25.
x=\frac{13±5}{2\times 9}
Ko te tauaro o -13 ko 13.
x=\frac{13±5}{18}
Whakareatia 2 ki te 9.
x=\frac{18}{18}
Nā, me whakaoti te whārite x=\frac{13±5}{18} ina he tāpiri te ±. Tāpiri 13 ki te 5.
x=1
Whakawehe 18 ki te 18.
x=\frac{8}{18}
Nā, me whakaoti te whārite x=\frac{13±5}{18} ina he tango te ±. Tango 5 mai i 13.
x=\frac{4}{9}
Whakahekea te hautanga \frac{8}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=1 x=\frac{4}{9}
Kua oti te whārite te whakatau.
3^{2}x^{2}-13x+4=0
Whakarohaina te \left(3x\right)^{2}.
9x^{2}-13x+4=0
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9x^{2}-13x=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{9x^{2}-13x}{9}=-\frac{4}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}-\frac{13}{9}x=-\frac{4}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}-\frac{13}{9}x+\left(-\frac{13}{18}\right)^{2}=-\frac{4}{9}+\left(-\frac{13}{18}\right)^{2}
Whakawehea te -\frac{13}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{18}. Nā, tāpiria te pūrua o te -\frac{13}{18} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{13}{9}x+\frac{169}{324}=-\frac{4}{9}+\frac{169}{324}
Pūruatia -\frac{13}{18} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{13}{9}x+\frac{169}{324}=\frac{25}{324}
Tāpiri -\frac{4}{9} ki te \frac{169}{324} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{13}{18}\right)^{2}=\frac{25}{324}
Tauwehea x^{2}-\frac{13}{9}x+\frac{169}{324}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{18}\right)^{2}}=\sqrt{\frac{25}{324}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{13}{18}=\frac{5}{18} x-\frac{13}{18}=-\frac{5}{18}
Whakarūnātia.
x=1 x=\frac{4}{9}
Me tāpiri \frac{13}{18} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}