Aromātai
225w^{\frac{5}{2}}
Whakaroha
225w^{\frac{5}{2}}
Tohaina
Kua tāruatia ki te papatopenga
3^{2}\left(w^{\frac{3}{4}}\right)^{2}\times \left(5w^{\frac{1}{2}}\right)^{2}
Whakarohaina te \left(3w^{\frac{3}{4}}\right)^{2}.
3^{2}w^{\frac{3}{2}}\times \left(5w^{\frac{1}{2}}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te \frac{3}{4} me te 2 kia riro ai te \frac{3}{2}.
9w^{\frac{3}{2}}\times \left(5w^{\frac{1}{2}}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9w^{\frac{3}{2}}\times 5^{2}\left(w^{\frac{1}{2}}\right)^{2}
Whakarohaina te \left(5w^{\frac{1}{2}}\right)^{2}.
9w^{\frac{3}{2}}\times 5^{2}w^{1}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te \frac{1}{2} me te 2 kia riro ai te 1.
9w^{\frac{3}{2}}\times 25w^{1}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
9w^{\frac{3}{2}}\times 25w
Tātaihia te w mā te pū o 1, kia riro ko w.
225w^{\frac{3}{2}}w
Whakareatia te 9 ki te 25, ka 225.
225w^{\frac{5}{2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te \frac{3}{2} me te 1 kia riro ai te \frac{5}{2}.
3^{2}\left(w^{\frac{3}{4}}\right)^{2}\times \left(5w^{\frac{1}{2}}\right)^{2}
Whakarohaina te \left(3w^{\frac{3}{4}}\right)^{2}.
3^{2}w^{\frac{3}{2}}\times \left(5w^{\frac{1}{2}}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te \frac{3}{4} me te 2 kia riro ai te \frac{3}{2}.
9w^{\frac{3}{2}}\times \left(5w^{\frac{1}{2}}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9w^{\frac{3}{2}}\times 5^{2}\left(w^{\frac{1}{2}}\right)^{2}
Whakarohaina te \left(5w^{\frac{1}{2}}\right)^{2}.
9w^{\frac{3}{2}}\times 5^{2}w^{1}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te \frac{1}{2} me te 2 kia riro ai te 1.
9w^{\frac{3}{2}}\times 25w^{1}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
9w^{\frac{3}{2}}\times 25w
Tātaihia te w mā te pū o 1, kia riro ko w.
225w^{\frac{3}{2}}w
Whakareatia te 9 ki te 25, ka 225.
225w^{\frac{5}{2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te \frac{3}{2} me te 1 kia riro ai te \frac{5}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}