Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9\left(\sqrt{2}\right)^{2}-12\sqrt{2}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3\sqrt{2}-2\sqrt{3}\right)^{2}.
9\times 2-12\sqrt{2}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
18-12\sqrt{2}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Whakareatia te 9 ki te 2, ka 18.
18-12\sqrt{6}+4\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
18-12\sqrt{6}+4\times 3
Ko te pūrua o \sqrt{3} ko 3.
18-12\sqrt{6}+12
Whakareatia te 4 ki te 3, ka 12.
30-12\sqrt{6}
Tāpirihia te 18 ki te 12, ka 30.
9\left(\sqrt{2}\right)^{2}-12\sqrt{2}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3\sqrt{2}-2\sqrt{3}\right)^{2}.
9\times 2-12\sqrt{2}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
18-12\sqrt{2}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Whakareatia te 9 ki te 2, ka 18.
18-12\sqrt{6}+4\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
18-12\sqrt{6}+4\times 3
Ko te pūrua o \sqrt{3} ko 3.
18-12\sqrt{6}+12
Whakareatia te 4 ki te 3, ka 12.
30-12\sqrt{6}
Tāpirihia te 18 ki te 12, ka 30.