Whakaoti mō x
x=1
x=3
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
{ \left(2x-5 \right) }^{ 2 } + { x }^{ 2 } +6(2x-5)-12x+20=0
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}-20x+25+x^{2}+6\left(2x-5\right)-12x+20=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-5\right)^{2}.
5x^{2}-20x+25+6\left(2x-5\right)-12x+20=0
Pahekotia te 4x^{2} me x^{2}, ka 5x^{2}.
5x^{2}-20x+25+12x-30-12x+20=0
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 2x-5.
5x^{2}-8x+25-30-12x+20=0
Pahekotia te -20x me 12x, ka -8x.
5x^{2}-8x-5-12x+20=0
Tangohia te 30 i te 25, ka -5.
5x^{2}-20x-5+20=0
Pahekotia te -8x me -12x, ka -20x.
5x^{2}-20x+15=0
Tāpirihia te -5 ki te 20, ka 15.
x^{2}-4x+3=0
Whakawehea ngā taha e rua ki te 5.
a+b=-4 ab=1\times 3=3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-3 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-3x\right)+\left(-x+3\right)
Tuhia anō te x^{2}-4x+3 hei \left(x^{2}-3x\right)+\left(-x+3\right).
x\left(x-3\right)-\left(x-3\right)
Tauwehea te x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-3\right)\left(x-1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=1
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x-1=0.
4x^{2}-20x+25+x^{2}+6\left(2x-5\right)-12x+20=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-5\right)^{2}.
5x^{2}-20x+25+6\left(2x-5\right)-12x+20=0
Pahekotia te 4x^{2} me x^{2}, ka 5x^{2}.
5x^{2}-20x+25+12x-30-12x+20=0
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 2x-5.
5x^{2}-8x+25-30-12x+20=0
Pahekotia te -20x me 12x, ka -8x.
5x^{2}-8x-5-12x+20=0
Tangohia te 30 i te 25, ka -5.
5x^{2}-20x-5+20=0
Pahekotia te -8x me -12x, ka -20x.
5x^{2}-20x+15=0
Tāpirihia te -5 ki te 20, ka 15.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 5\times 15}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -20 mō b, me 15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 5\times 15}}{2\times 5}
Pūrua -20.
x=\frac{-\left(-20\right)±\sqrt{400-20\times 15}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-\left(-20\right)±\sqrt{400-300}}{2\times 5}
Whakareatia -20 ki te 15.
x=\frac{-\left(-20\right)±\sqrt{100}}{2\times 5}
Tāpiri 400 ki te -300.
x=\frac{-\left(-20\right)±10}{2\times 5}
Tuhia te pūtakerua o te 100.
x=\frac{20±10}{2\times 5}
Ko te tauaro o -20 ko 20.
x=\frac{20±10}{10}
Whakareatia 2 ki te 5.
x=\frac{30}{10}
Nā, me whakaoti te whārite x=\frac{20±10}{10} ina he tāpiri te ±. Tāpiri 20 ki te 10.
x=3
Whakawehe 30 ki te 10.
x=\frac{10}{10}
Nā, me whakaoti te whārite x=\frac{20±10}{10} ina he tango te ±. Tango 10 mai i 20.
x=1
Whakawehe 10 ki te 10.
x=3 x=1
Kua oti te whārite te whakatau.
4x^{2}-20x+25+x^{2}+6\left(2x-5\right)-12x+20=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-5\right)^{2}.
5x^{2}-20x+25+6\left(2x-5\right)-12x+20=0
Pahekotia te 4x^{2} me x^{2}, ka 5x^{2}.
5x^{2}-20x+25+12x-30-12x+20=0
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 2x-5.
5x^{2}-8x+25-30-12x+20=0
Pahekotia te -20x me 12x, ka -8x.
5x^{2}-8x-5-12x+20=0
Tangohia te 30 i te 25, ka -5.
5x^{2}-20x-5+20=0
Pahekotia te -8x me -12x, ka -20x.
5x^{2}-20x+15=0
Tāpirihia te -5 ki te 20, ka 15.
5x^{2}-20x=-15
Tangohia te 15 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{5x^{2}-20x}{5}=-\frac{15}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(-\frac{20}{5}\right)x=-\frac{15}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}-4x=-\frac{15}{5}
Whakawehe -20 ki te 5.
x^{2}-4x=-3
Whakawehe -15 ki te 5.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-3+4
Pūrua -2.
x^{2}-4x+4=1
Tāpiri -3 ki te 4.
\left(x-2\right)^{2}=1
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=1 x-2=-1
Whakarūnātia.
x=3 x=1
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}