Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}-12x+9=49
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-3\right)^{2}.
4x^{2}-12x+9-49=0
Tangohia te 49 mai i ngā taha e rua.
4x^{2}-12x-40=0
Tangohia te 49 i te 9, ka -40.
x^{2}-3x-10=0
Whakawehea ngā taha e rua ki te 4.
a+b=-3 ab=1\left(-10\right)=-10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-10 2,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
1-10=-9 2-5=-3
Tātaihia te tapeke mō ia takirua.
a=-5 b=2
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(x^{2}-5x\right)+\left(2x-10\right)
Tuhia anō te x^{2}-3x-10 hei \left(x^{2}-5x\right)+\left(2x-10\right).
x\left(x-5\right)+2\left(x-5\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-5\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=-2
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+2=0.
4x^{2}-12x+9=49
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-3\right)^{2}.
4x^{2}-12x+9-49=0
Tangohia te 49 mai i ngā taha e rua.
4x^{2}-12x-40=0
Tangohia te 49 i te 9, ka -40.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-40\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -12 mō b, me -40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-40\right)}}{2\times 4}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\left(-40\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-12\right)±\sqrt{144+640}}{2\times 4}
Whakareatia -16 ki te -40.
x=\frac{-\left(-12\right)±\sqrt{784}}{2\times 4}
Tāpiri 144 ki te 640.
x=\frac{-\left(-12\right)±28}{2\times 4}
Tuhia te pūtakerua o te 784.
x=\frac{12±28}{2\times 4}
Ko te tauaro o -12 ko 12.
x=\frac{12±28}{8}
Whakareatia 2 ki te 4.
x=\frac{40}{8}
Nā, me whakaoti te whārite x=\frac{12±28}{8} ina he tāpiri te ±. Tāpiri 12 ki te 28.
x=5
Whakawehe 40 ki te 8.
x=-\frac{16}{8}
Nā, me whakaoti te whārite x=\frac{12±28}{8} ina he tango te ±. Tango 28 mai i 12.
x=-2
Whakawehe -16 ki te 8.
x=5 x=-2
Kua oti te whārite te whakatau.
4x^{2}-12x+9=49
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-3\right)^{2}.
4x^{2}-12x=49-9
Tangohia te 9 mai i ngā taha e rua.
4x^{2}-12x=40
Tangohia te 9 i te 49, ka 40.
\frac{4x^{2}-12x}{4}=\frac{40}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{12}{4}\right)x=\frac{40}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-3x=\frac{40}{4}
Whakawehe -12 ki te 4.
x^{2}-3x=10
Whakawehe 40 ki te 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=10+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=10+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{49}{4}
Tāpiri 10 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{49}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{7}{2} x-\frac{3}{2}=-\frac{7}{2}
Whakarūnātia.
x=5 x=-2
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.