Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2^{2}x^{2}-4x+5=0
Whakarohaina te \left(2x\right)^{2}.
4x^{2}-4x+5=0
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\times 5}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -4 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\times 5}}{2\times 4}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-16\times 5}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-4\right)±\sqrt{16-80}}{2\times 4}
Whakareatia -16 ki te 5.
x=\frac{-\left(-4\right)±\sqrt{-64}}{2\times 4}
Tāpiri 16 ki te -80.
x=\frac{-\left(-4\right)±8i}{2\times 4}
Tuhia te pūtakerua o te -64.
x=\frac{4±8i}{2\times 4}
Ko te tauaro o -4 ko 4.
x=\frac{4±8i}{8}
Whakareatia 2 ki te 4.
x=\frac{4+8i}{8}
Nā, me whakaoti te whārite x=\frac{4±8i}{8} ina he tāpiri te ±. Tāpiri 4 ki te 8i.
x=\frac{1}{2}+i
Whakawehe 4+8i ki te 8.
x=\frac{4-8i}{8}
Nā, me whakaoti te whārite x=\frac{4±8i}{8} ina he tango te ±. Tango 8i mai i 4.
x=\frac{1}{2}-i
Whakawehe 4-8i ki te 8.
x=\frac{1}{2}+i x=\frac{1}{2}-i
Kua oti te whārite te whakatau.
2^{2}x^{2}-4x+5=0
Whakarohaina te \left(2x\right)^{2}.
4x^{2}-4x+5=0
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-4x=-5
Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{4x^{2}-4x}{4}=-\frac{5}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{4}{4}\right)x=-\frac{5}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-x=-\frac{5}{4}
Whakawehe -4 ki te 4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{5}{4}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=\frac{-5+1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=-1
Tāpiri -\frac{5}{4} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{2}\right)^{2}=-1
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=i x-\frac{1}{2}=-i
Whakarūnātia.
x=\frac{1}{2}+i x=\frac{1}{2}-i
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.