Whakaoti mō x
x=-1
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2^{2}x^{2}-2\left(-x\right)-3=-1
Whakarohaina te \left(2x\right)^{2}.
4x^{2}-2\left(-x\right)-3=-1
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-2\left(-x\right)-3+1=0
Me tāpiri te 1 ki ngā taha e rua.
4x^{2}-2\left(-x\right)-2=0
Tāpirihia te -3 ki te 1, ka -2.
4x^{2}-2\left(-1\right)x-2=0
Whakareatia te -1 ki te 2, ka -2.
4x^{2}+2x-2=0
Whakareatia te -2 ki te -1, ka 2.
2x^{2}+x-1=0
Whakawehea ngā taha e rua ki te 2.
a+b=1 ab=2\left(-1\right)=-2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(2x^{2}-x\right)+\left(2x-1\right)
Tuhia anō te 2x^{2}+x-1 hei \left(2x^{2}-x\right)+\left(2x-1\right).
x\left(2x-1\right)+2x-1
Whakatauwehea atu x i te 2x^{2}-x.
\left(2x-1\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 2x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{2} x=-1
Hei kimi otinga whārite, me whakaoti te 2x-1=0 me te x+1=0.
2^{2}x^{2}-2\left(-x\right)-3=-1
Whakarohaina te \left(2x\right)^{2}.
4x^{2}-2\left(-x\right)-3=-1
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-2\left(-x\right)-3+1=0
Me tāpiri te 1 ki ngā taha e rua.
4x^{2}-2\left(-x\right)-2=0
Tāpirihia te -3 ki te 1, ka -2.
4x^{2}-2\left(-1\right)x-2=0
Whakareatia te -1 ki te 2, ka -2.
4x^{2}+2x-2=0
Whakareatia te -2 ki te -1, ka 2.
x=\frac{-2±\sqrt{2^{2}-4\times 4\left(-2\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 2 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 4\left(-2\right)}}{2\times 4}
Pūrua 2.
x=\frac{-2±\sqrt{4-16\left(-2\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-2±\sqrt{4+32}}{2\times 4}
Whakareatia -16 ki te -2.
x=\frac{-2±\sqrt{36}}{2\times 4}
Tāpiri 4 ki te 32.
x=\frac{-2±6}{2\times 4}
Tuhia te pūtakerua o te 36.
x=\frac{-2±6}{8}
Whakareatia 2 ki te 4.
x=\frac{4}{8}
Nā, me whakaoti te whārite x=\frac{-2±6}{8} ina he tāpiri te ±. Tāpiri -2 ki te 6.
x=\frac{1}{2}
Whakahekea te hautanga \frac{4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{8}{8}
Nā, me whakaoti te whārite x=\frac{-2±6}{8} ina he tango te ±. Tango 6 mai i -2.
x=-1
Whakawehe -8 ki te 8.
x=\frac{1}{2} x=-1
Kua oti te whārite te whakatau.
2^{2}x^{2}-2\left(-x\right)-3=-1
Whakarohaina te \left(2x\right)^{2}.
4x^{2}-2\left(-x\right)-3=-1
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-2\left(-x\right)=-1+3
Me tāpiri te 3 ki ngā taha e rua.
4x^{2}-2\left(-x\right)=2
Tāpirihia te -1 ki te 3, ka 2.
4x^{2}-2\left(-1\right)x=2
Whakareatia te -1 ki te 2, ka -2.
4x^{2}+2x=2
Whakareatia te -2 ki te -1, ka 2.
\frac{4x^{2}+2x}{4}=\frac{2}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{2}{4}x=\frac{2}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+\frac{1}{2}x=\frac{2}{4}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{1}{2}x=\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Tāpiri \frac{1}{2} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
Tauwehea x^{2}+\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
Whakarūnātia.
x=\frac{1}{2} x=-1
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}