Whakaoti mō x (complex solution)
x=\frac{-5+\sqrt{71}i}{8}\approx -0.625+1.053268722i
x=\frac{-\sqrt{71}i-5}{8}\approx -0.625-1.053268722i
Graph
Tohaina
Kua tāruatia ki te papatopenga
2^{2}x^{2}+5x+6=0
Whakarohaina te \left(2x\right)^{2}.
4x^{2}+5x+6=0
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
x=\frac{-5±\sqrt{5^{2}-4\times 4\times 6}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 5 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 4\times 6}}{2\times 4}
Pūrua 5.
x=\frac{-5±\sqrt{25-16\times 6}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-5±\sqrt{25-96}}{2\times 4}
Whakareatia -16 ki te 6.
x=\frac{-5±\sqrt{-71}}{2\times 4}
Tāpiri 25 ki te -96.
x=\frac{-5±\sqrt{71}i}{2\times 4}
Tuhia te pūtakerua o te -71.
x=\frac{-5±\sqrt{71}i}{8}
Whakareatia 2 ki te 4.
x=\frac{-5+\sqrt{71}i}{8}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{71}i}{8} ina he tāpiri te ±. Tāpiri -5 ki te i\sqrt{71}.
x=\frac{-\sqrt{71}i-5}{8}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{71}i}{8} ina he tango te ±. Tango i\sqrt{71} mai i -5.
x=\frac{-5+\sqrt{71}i}{8} x=\frac{-\sqrt{71}i-5}{8}
Kua oti te whārite te whakatau.
2^{2}x^{2}+5x+6=0
Whakarohaina te \left(2x\right)^{2}.
4x^{2}+5x+6=0
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}+5x=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{4x^{2}+5x}{4}=-\frac{6}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{5}{4}x=-\frac{6}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+\frac{5}{4}x=-\frac{3}{2}
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=-\frac{3}{2}+\left(\frac{5}{8}\right)^{2}
Whakawehea te \frac{5}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{8}. Nā, tāpiria te pūrua o te \frac{5}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{4}x+\frac{25}{64}=-\frac{3}{2}+\frac{25}{64}
Pūruatia \frac{5}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{4}x+\frac{25}{64}=-\frac{71}{64}
Tāpiri -\frac{3}{2} ki te \frac{25}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{8}\right)^{2}=-\frac{71}{64}
Tauwehea x^{2}+\frac{5}{4}x+\frac{25}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{-\frac{71}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{8}=\frac{\sqrt{71}i}{8} x+\frac{5}{8}=-\frac{\sqrt{71}i}{8}
Whakarūnātia.
x=\frac{-5+\sqrt{71}i}{8} x=\frac{-\sqrt{71}i-5}{8}
Me tango \frac{5}{8} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}