Aromātai
8\left(x^{3}-2\right)
Kimi Pārōnaki e ai ki x
24x^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2x\right)^{3}-2^{2+2}
Tāpirihia te 1 ki te 2, ka 3.
2^{3}x^{3}-2^{2+2}
Whakarohaina te \left(2x\right)^{3}.
8x^{3}-2^{2+2}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
8x^{3}-2^{4}
Tāpirihia te 2 ki te 2, ka 4.
8x^{3}-16
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(2x\right)^{3}-2^{2+2})
Tāpirihia te 1 ki te 2, ka 3.
\frac{\mathrm{d}}{\mathrm{d}x}(2^{3}x^{3}-2^{2+2})
Whakarohaina te \left(2x\right)^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(8x^{3}-2^{2+2})
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\frac{\mathrm{d}}{\mathrm{d}x}(8x^{3}-2^{4})
Tāpirihia te 2 ki te 2, ka 4.
\frac{\mathrm{d}}{\mathrm{d}x}(8x^{3}-16)
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
3\times 8x^{3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
24x^{3-1}
Whakareatia 3 ki te 8.
24x^{2}
Tango 1 mai i 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}