Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2x\right)^{3}-2^{2+2}
Tāpirihia te 1 ki te 2, ka 3.
2^{3}x^{3}-2^{2+2}
Whakarohaina te \left(2x\right)^{3}.
8x^{3}-2^{2+2}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
8x^{3}-2^{4}
Tāpirihia te 2 ki te 2, ka 4.
8x^{3}-16
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(2x\right)^{3}-2^{2+2})
Tāpirihia te 1 ki te 2, ka 3.
\frac{\mathrm{d}}{\mathrm{d}x}(2^{3}x^{3}-2^{2+2})
Whakarohaina te \left(2x\right)^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(8x^{3}-2^{2+2})
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\frac{\mathrm{d}}{\mathrm{d}x}(8x^{3}-2^{4})
Tāpirihia te 2 ki te 2, ka 4.
\frac{\mathrm{d}}{\mathrm{d}x}(8x^{3}-16)
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
3\times 8x^{3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
24x^{3-1}
Whakareatia 3 ki te 8.
24x^{2}
Tango 1 mai i 3.