Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\left(\sqrt{3}\right)^{2}-4\sqrt{3}+1+\left(2\sqrt{3}+1\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2\sqrt{3}-1\right)^{2}.
4\times 3-4\sqrt{3}+1+\left(2\sqrt{3}+1\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
12-4\sqrt{3}+1+\left(2\sqrt{3}+1\right)^{2}
Whakareatia te 4 ki te 3, ka 12.
13-4\sqrt{3}+\left(2\sqrt{3}+1\right)^{2}
Tāpirihia te 12 ki te 1, ka 13.
13-4\sqrt{3}+4\left(\sqrt{3}\right)^{2}+4\sqrt{3}+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2\sqrt{3}+1\right)^{2}.
13-4\sqrt{3}+4\times 3+4\sqrt{3}+1
Ko te pūrua o \sqrt{3} ko 3.
13-4\sqrt{3}+12+4\sqrt{3}+1
Whakareatia te 4 ki te 3, ka 12.
13-4\sqrt{3}+13+4\sqrt{3}
Tāpirihia te 12 ki te 1, ka 13.
26-4\sqrt{3}+4\sqrt{3}
Tāpirihia te 13 ki te 13, ka 26.
26
Pahekotia te -4\sqrt{3} me 4\sqrt{3}, ka 0.