Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\left(\sqrt{3}\right)^{2}+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2\sqrt{3}+3\sqrt{5}\right)^{2}.
4\times 3+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
12+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Whakareatia te 4 ki te 3, ka 12.
12+12\sqrt{15}+9\left(\sqrt{5}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
12+12\sqrt{15}+9\times 5
Ko te pūrua o \sqrt{5} ko 5.
12+12\sqrt{15}+45
Whakareatia te 9 ki te 5, ka 45.
57+12\sqrt{15}
Tāpirihia te 12 ki te 45, ka 57.
4\left(\sqrt{3}\right)^{2}+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2\sqrt{3}+3\sqrt{5}\right)^{2}.
4\times 3+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
12+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Whakareatia te 4 ki te 3, ka 12.
12+12\sqrt{15}+9\left(\sqrt{5}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
12+12\sqrt{15}+9\times 5
Ko te pūrua o \sqrt{5} ko 5.
12+12\sqrt{15}+45
Whakareatia te 9 ki te 5, ka 45.
57+12\sqrt{15}
Tāpirihia te 12 ki te 45, ka 57.