Whakaoti mō x
x=4
x=-4
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
{ \left(2 \sqrt{ 3 } \right) }^{ 2 } + { 2 }^{ 2 } = { x }^{ 2 }
Tohaina
Kua tāruatia ki te papatopenga
2^{2}\left(\sqrt{3}\right)^{2}+2^{2}=x^{2}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
4\left(\sqrt{3}\right)^{2}+2^{2}=x^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4\times 3+2^{2}=x^{2}
Ko te pūrua o \sqrt{3} ko 3.
12+2^{2}=x^{2}
Whakareatia te 4 ki te 3, ka 12.
12+4=x^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
16=x^{2}
Tāpirihia te 12 ki te 4, ka 16.
x^{2}=16
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-16=0
Tangohia te 16 mai i ngā taha e rua.
\left(x-4\right)\left(x+4\right)=0
Whakaarohia te x^{2}-16. Tuhia anō te x^{2}-16 hei x^{2}-4^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+4=0.
2^{2}\left(\sqrt{3}\right)^{2}+2^{2}=x^{2}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
4\left(\sqrt{3}\right)^{2}+2^{2}=x^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4\times 3+2^{2}=x^{2}
Ko te pūrua o \sqrt{3} ko 3.
12+2^{2}=x^{2}
Whakareatia te 4 ki te 3, ka 12.
12+4=x^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
16=x^{2}
Tāpirihia te 12 ki te 4, ka 16.
x^{2}=16
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=4 x=-4
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2^{2}\left(\sqrt{3}\right)^{2}+2^{2}=x^{2}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
4\left(\sqrt{3}\right)^{2}+2^{2}=x^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4\times 3+2^{2}=x^{2}
Ko te pūrua o \sqrt{3} ko 3.
12+2^{2}=x^{2}
Whakareatia te 4 ki te 3, ka 12.
12+4=x^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
16=x^{2}
Tāpirihia te 12 ki te 4, ka 16.
x^{2}=16
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-16=0
Tangohia te 16 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-16\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-16\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{64}}{2}
Whakareatia -4 ki te -16.
x=\frac{0±8}{2}
Tuhia te pūtakerua o te 64.
x=4
Nā, me whakaoti te whārite x=\frac{0±8}{2} ina he tāpiri te ±. Whakawehe 8 ki te 2.
x=-4
Nā, me whakaoti te whārite x=\frac{0±8}{2} ina he tango te ±. Whakawehe -8 ki te 2.
x=4 x=-4
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}