Aromātai
\frac{1}{2500}=0.0004
Tauwehe
\frac{1}{2 ^ {2} \cdot 5 ^ {4}} = 0.0004
Tohaina
Kua tāruatia ki te papatopenga
1000^{-3}\sqrt{\left(\frac{2\times 2\times 1\times 0^{3}\times \frac{40}{36}}{15}\right)^{2}+\left(2\times 200\times 10^{3}\right)^{2}}
Whakareatia te 100 ki te 10, ka 1000.
\frac{1}{1000000000}\sqrt{\left(\frac{2\times 2\times 1\times 0^{3}\times \frac{40}{36}}{15}\right)^{2}+\left(2\times 200\times 10^{3}\right)^{2}}
Tātaihia te 1000 mā te pū o -3, kia riro ko \frac{1}{1000000000}.
\frac{1}{1000000000}\sqrt{\left(\frac{4\times 1\times 0^{3}\times \frac{40}{36}}{15}\right)^{2}+\left(2\times 200\times 10^{3}\right)^{2}}
Whakareatia te 2 ki te 2, ka 4.
\frac{1}{1000000000}\sqrt{\left(\frac{4\times 0^{3}\times \frac{40}{36}}{15}\right)^{2}+\left(2\times 200\times 10^{3}\right)^{2}}
Whakareatia te 4 ki te 1, ka 4.
\frac{1}{1000000000}\sqrt{\left(\frac{4\times 0\times \frac{40}{36}}{15}\right)^{2}+\left(2\times 200\times 10^{3}\right)^{2}}
Tātaihia te 0 mā te pū o 3, kia riro ko 0.
\frac{1}{1000000000}\sqrt{\left(\frac{0\times \frac{40}{36}}{15}\right)^{2}+\left(2\times 200\times 10^{3}\right)^{2}}
Whakareatia te 4 ki te 0, ka 0.
\frac{1}{1000000000}\sqrt{\left(\frac{0\times \frac{10}{9}}{15}\right)^{2}+\left(2\times 200\times 10^{3}\right)^{2}}
Whakahekea te hautanga \frac{40}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{1}{1000000000}\sqrt{\left(\frac{0}{15}\right)^{2}+\left(2\times 200\times 10^{3}\right)^{2}}
Whakareatia te 0 ki te \frac{10}{9}, ka 0.
\frac{1}{1000000000}\sqrt{0^{2}+\left(2\times 200\times 10^{3}\right)^{2}}
Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
\frac{1}{1000000000}\sqrt{0+\left(2\times 200\times 10^{3}\right)^{2}}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
\frac{1}{1000000000}\sqrt{0+\left(400\times 10^{3}\right)^{2}}
Whakareatia te 2 ki te 200, ka 400.
\frac{1}{1000000000}\sqrt{0+\left(400\times 1000\right)^{2}}
Tātaihia te 10 mā te pū o 3, kia riro ko 1000.
\frac{1}{1000000000}\sqrt{0+400000^{2}}
Whakareatia te 400 ki te 1000, ka 400000.
\frac{1}{1000000000}\sqrt{0+160000000000}
Tātaihia te 400000 mā te pū o 2, kia riro ko 160000000000.
\frac{1}{1000000000}\sqrt{160000000000}
Tāpirihia te 0 ki te 160000000000, ka 160000000000.
\frac{1}{1000000000}\times 400000
Tātaitia te pūtakerua o 160000000000 kia tae ki 400000.
\frac{1}{2500}
Whakareatia te \frac{1}{1000000000} ki te 400000, ka \frac{1}{2500}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}