Whakaoti mō x
x=\frac{\sqrt{690}}{25}+1.58\approx 2.630714043
x=-\frac{\sqrt{690}}{25}+1.58\approx 0.529285957
Graph
Tohaina
Kua tāruatia ki te papatopenga
1.3924-2.36x+x^{2}=0.8x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1.18-x\right)^{2}.
1.3924-2.36x+x^{2}-0.8x=0
Tangohia te 0.8x mai i ngā taha e rua.
1.3924-3.16x+x^{2}=0
Pahekotia te -2.36x me -0.8x, ka -3.16x.
x^{2}-3.16x+1.3924=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3.16\right)±\sqrt{\left(-3.16\right)^{2}-4\times 1.3924}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3.16 mō b, me 1.3924 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3.16\right)±\sqrt{9.9856-4\times 1.3924}}{2}
Pūruatia -3.16 mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-3.16\right)±\sqrt{\frac{6241-3481}{625}}}{2}
Whakareatia -4 ki te 1.3924.
x=\frac{-\left(-3.16\right)±\sqrt{4.416}}{2}
Tāpiri 9.9856 ki te -5.5696 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-3.16\right)±\frac{2\sqrt{690}}{25}}{2}
Tuhia te pūtakerua o te 4.416.
x=\frac{3.16±\frac{2\sqrt{690}}{25}}{2}
Ko te tauaro o -3.16 ko 3.16.
x=\frac{2\sqrt{690}+79}{2\times 25}
Nā, me whakaoti te whārite x=\frac{3.16±\frac{2\sqrt{690}}{25}}{2} ina he tāpiri te ±. Tāpiri 3.16 ki te \frac{2\sqrt{690}}{25}.
x=\frac{\sqrt{690}}{25}+\frac{79}{50}
Whakawehe \frac{79+2\sqrt{690}}{25} ki te 2.
x=\frac{79-2\sqrt{690}}{2\times 25}
Nā, me whakaoti te whārite x=\frac{3.16±\frac{2\sqrt{690}}{25}}{2} ina he tango te ±. Tango \frac{2\sqrt{690}}{25} mai i 3.16.
x=-\frac{\sqrt{690}}{25}+\frac{79}{50}
Whakawehe \frac{79-2\sqrt{690}}{25} ki te 2.
x=\frac{\sqrt{690}}{25}+\frac{79}{50} x=-\frac{\sqrt{690}}{25}+\frac{79}{50}
Kua oti te whārite te whakatau.
1.3924-2.36x+x^{2}=0.8x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1.18-x\right)^{2}.
1.3924-2.36x+x^{2}-0.8x=0
Tangohia te 0.8x mai i ngā taha e rua.
1.3924-3.16x+x^{2}=0
Pahekotia te -2.36x me -0.8x, ka -3.16x.
-3.16x+x^{2}=-1.3924
Tangohia te 1.3924 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-3.16x=-1.3924
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-3.16x+\left(-1.58\right)^{2}=-1.3924+\left(-1.58\right)^{2}
Whakawehea te -3.16, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1.58. Nā, tāpiria te pūrua o te -1.58 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3.16x+2.4964=\frac{-3481+6241}{2500}
Pūruatia -1.58 mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3.16x+2.4964=1.104
Tāpiri -1.3924 ki te 2.4964 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-1.58\right)^{2}=1.104
Tauwehea x^{2}-3.16x+2.4964. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1.58\right)^{2}}=\sqrt{1.104}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1.58=\frac{\sqrt{690}}{25} x-1.58=-\frac{\sqrt{690}}{25}
Whakarūnātia.
x=\frac{\sqrt{690}}{25}+\frac{79}{50} x=-\frac{\sqrt{690}}{25}+\frac{79}{50}
Me tāpiri 1.58 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}