Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+\sqrt{3}\right)^{2}.
1+2\sqrt{3}+3+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
4+2\sqrt{3}+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Tāpirihia te 1 ki te 3, ka 4.
4+2\sqrt{3}+\left(\frac{\sqrt{3}}{3}+\frac{3}{3}\right)^{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{3}{3}.
4+2\sqrt{3}+\left(\frac{\sqrt{3}+3}{3}\right)^{2}
Tā te mea he rite te tauraro o \frac{\sqrt{3}}{3} me \frac{3}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
4+2\sqrt{3}+\frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}}
Kia whakarewa i te \frac{\sqrt{3}+3}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(4+2\sqrt{3}\right)\times 3^{2}}{3^{2}}+\frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 4+2\sqrt{3} ki te \frac{3^{2}}{3^{2}}.
\frac{\left(4+2\sqrt{3}\right)\times 3^{2}+\left(\sqrt{3}+3\right)^{2}}{3^{2}}
Tā te mea he rite te tauraro o \frac{\left(4+2\sqrt{3}\right)\times 3^{2}}{3^{2}} me \frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{36+18\sqrt{3}+\left(\sqrt{3}\right)^{2}+6\sqrt{3}+9}{3^{2}}
Mahia ngā whakarea i roto o \left(4+2\sqrt{3}\right)\times 3^{2}+\left(\sqrt{3}+3\right)^{2}.
\frac{48+24\sqrt{3}}{3^{2}}
Mahia ngā tātaitai i roto o 36+18\sqrt{3}+\left(\sqrt{3}\right)^{2}+6\sqrt{3}+9.
\frac{48+24\sqrt{3}}{9}
Whakarohaina te 3^{2}.
1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+\sqrt{3}\right)^{2}.
1+2\sqrt{3}+3+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
4+2\sqrt{3}+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Tāpirihia te 1 ki te 3, ka 4.
4+2\sqrt{3}+\left(\frac{\sqrt{3}}{3}+\frac{3}{3}\right)^{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{3}{3}.
4+2\sqrt{3}+\left(\frac{\sqrt{3}+3}{3}\right)^{2}
Tā te mea he rite te tauraro o \frac{\sqrt{3}}{3} me \frac{3}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
4+2\sqrt{3}+\frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}}
Kia whakarewa i te \frac{\sqrt{3}+3}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(4+2\sqrt{3}\right)\times 3^{2}}{3^{2}}+\frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 4+2\sqrt{3} ki te \frac{3^{2}}{3^{2}}.
\frac{\left(4+2\sqrt{3}\right)\times 3^{2}+\left(\sqrt{3}+3\right)^{2}}{3^{2}}
Tā te mea he rite te tauraro o \frac{\left(4+2\sqrt{3}\right)\times 3^{2}}{3^{2}} me \frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{36+18\sqrt{3}+\left(\sqrt{3}\right)^{2}+6\sqrt{3}+9}{3^{2}}
Mahia ngā whakarea i roto o \left(4+2\sqrt{3}\right)\times 3^{2}+\left(\sqrt{3}+3\right)^{2}.
\frac{48+24\sqrt{3}}{3^{2}}
Mahia ngā tātaitai i roto o 36+18\sqrt{3}+\left(\sqrt{3}\right)^{2}+6\sqrt{3}+9.
\frac{48+24\sqrt{3}}{9}
Whakarohaina te 3^{2}.