Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(1+\frac{32}{1000}\right)^{x}=200
Whakarohaina te \frac{3.2}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
\left(1+\frac{4}{125}\right)^{x}=200
Whakahekea te hautanga \frac{32}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\left(\frac{129}{125}\right)^{x}=200
Tāpirihia te 1 ki te \frac{4}{125}, ka \frac{129}{125}.
\log(\left(\frac{129}{125}\right)^{x})=\log(200)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
x\log(\frac{129}{125})=\log(200)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
x=\frac{\log(200)}{\log(\frac{129}{125})}
Whakawehea ngā taha e rua ki te \log(\frac{129}{125}).
x=\log_{\frac{129}{125}}\left(200\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).