Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(0\sqrt{3}x\right)^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
Whakareatia te 0 ki te 5, ka 0.
0^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
Ko te tau i whakarea ki te kore ka hua ko te kore.
0+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
0+25-150x+225x^{2}=\left(1+x\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-15x\right)^{2}.
25-150x+225x^{2}=\left(1+x\right)^{2}
Tāpirihia te 0 ki te 25, ka 25.
25-150x+225x^{2}=1+2x+x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
25-150x+225x^{2}-1=2x+x^{2}
Tangohia te 1 mai i ngā taha e rua.
24-150x+225x^{2}=2x+x^{2}
Tangohia te 1 i te 25, ka 24.
24-150x+225x^{2}-2x=x^{2}
Tangohia te 2x mai i ngā taha e rua.
24-152x+225x^{2}=x^{2}
Pahekotia te -150x me -2x, ka -152x.
24-152x+225x^{2}-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
24-152x+224x^{2}=0
Pahekotia te 225x^{2} me -x^{2}, ka 224x^{2}.
224x^{2}-152x+24=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-152\right)±\sqrt{\left(-152\right)^{2}-4\times 224\times 24}}{2\times 224}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 224 mō a, -152 mō b, me 24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-152\right)±\sqrt{23104-4\times 224\times 24}}{2\times 224}
Pūrua -152.
x=\frac{-\left(-152\right)±\sqrt{23104-896\times 24}}{2\times 224}
Whakareatia -4 ki te 224.
x=\frac{-\left(-152\right)±\sqrt{23104-21504}}{2\times 224}
Whakareatia -896 ki te 24.
x=\frac{-\left(-152\right)±\sqrt{1600}}{2\times 224}
Tāpiri 23104 ki te -21504.
x=\frac{-\left(-152\right)±40}{2\times 224}
Tuhia te pūtakerua o te 1600.
x=\frac{152±40}{2\times 224}
Ko te tauaro o -152 ko 152.
x=\frac{152±40}{448}
Whakareatia 2 ki te 224.
x=\frac{192}{448}
Nā, me whakaoti te whārite x=\frac{152±40}{448} ina he tāpiri te ±. Tāpiri 152 ki te 40.
x=\frac{3}{7}
Whakahekea te hautanga \frac{192}{448} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 64.
x=\frac{112}{448}
Nā, me whakaoti te whārite x=\frac{152±40}{448} ina he tango te ±. Tango 40 mai i 152.
x=\frac{1}{4}
Whakahekea te hautanga \frac{112}{448} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 112.
x=\frac{3}{7} x=\frac{1}{4}
Kua oti te whārite te whakatau.
\left(0\sqrt{3}x\right)^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
Whakareatia te 0 ki te 5, ka 0.
0^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
Ko te tau i whakarea ki te kore ka hua ko te kore.
0+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
0+25-150x+225x^{2}=\left(1+x\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-15x\right)^{2}.
25-150x+225x^{2}=\left(1+x\right)^{2}
Tāpirihia te 0 ki te 25, ka 25.
25-150x+225x^{2}=1+2x+x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
25-150x+225x^{2}-2x=1+x^{2}
Tangohia te 2x mai i ngā taha e rua.
25-152x+225x^{2}=1+x^{2}
Pahekotia te -150x me -2x, ka -152x.
25-152x+225x^{2}-x^{2}=1
Tangohia te x^{2} mai i ngā taha e rua.
25-152x+224x^{2}=1
Pahekotia te 225x^{2} me -x^{2}, ka 224x^{2}.
-152x+224x^{2}=1-25
Tangohia te 25 mai i ngā taha e rua.
-152x+224x^{2}=-24
Tangohia te 25 i te 1, ka -24.
224x^{2}-152x=-24
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{224x^{2}-152x}{224}=-\frac{24}{224}
Whakawehea ngā taha e rua ki te 224.
x^{2}+\left(-\frac{152}{224}\right)x=-\frac{24}{224}
Mā te whakawehe ki te 224 ka wetekia te whakareanga ki te 224.
x^{2}-\frac{19}{28}x=-\frac{24}{224}
Whakahekea te hautanga \frac{-152}{224} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x^{2}-\frac{19}{28}x=-\frac{3}{28}
Whakahekea te hautanga \frac{-24}{224} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x^{2}-\frac{19}{28}x+\left(-\frac{19}{56}\right)^{2}=-\frac{3}{28}+\left(-\frac{19}{56}\right)^{2}
Whakawehea te -\frac{19}{28}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{19}{56}. Nā, tāpiria te pūrua o te -\frac{19}{56} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{19}{28}x+\frac{361}{3136}=-\frac{3}{28}+\frac{361}{3136}
Pūruatia -\frac{19}{56} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{19}{28}x+\frac{361}{3136}=\frac{25}{3136}
Tāpiri -\frac{3}{28} ki te \frac{361}{3136} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{19}{56}\right)^{2}=\frac{25}{3136}
Tauwehea x^{2}-\frac{19}{28}x+\frac{361}{3136}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{56}\right)^{2}}=\sqrt{\frac{25}{3136}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{19}{56}=\frac{5}{56} x-\frac{19}{56}=-\frac{5}{56}
Whakarūnātia.
x=\frac{3}{7} x=\frac{1}{4}
Me tāpiri \frac{19}{56} ki ngā taha e rua o te whārite.