Whakaoti mō x
x=\frac{3\sqrt{889}+1}{200}\approx 0.452241545
x=\frac{1-3\sqrt{889}}{200}\approx -0.442241545
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(-50\right)^{2}x^{2}-25x-500=0
Whakarohaina te \left(-50x\right)^{2}.
2500x^{2}-25x-500=0
Tātaihia te -50 mā te pū o 2, kia riro ko 2500.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 2500\left(-500\right)}}{2\times 2500}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2500 mō a, -25 mō b, me -500 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 2500\left(-500\right)}}{2\times 2500}
Pūrua -25.
x=\frac{-\left(-25\right)±\sqrt{625-10000\left(-500\right)}}{2\times 2500}
Whakareatia -4 ki te 2500.
x=\frac{-\left(-25\right)±\sqrt{625+5000000}}{2\times 2500}
Whakareatia -10000 ki te -500.
x=\frac{-\left(-25\right)±\sqrt{5000625}}{2\times 2500}
Tāpiri 625 ki te 5000000.
x=\frac{-\left(-25\right)±75\sqrt{889}}{2\times 2500}
Tuhia te pūtakerua o te 5000625.
x=\frac{25±75\sqrt{889}}{2\times 2500}
Ko te tauaro o -25 ko 25.
x=\frac{25±75\sqrt{889}}{5000}
Whakareatia 2 ki te 2500.
x=\frac{75\sqrt{889}+25}{5000}
Nā, me whakaoti te whārite x=\frac{25±75\sqrt{889}}{5000} ina he tāpiri te ±. Tāpiri 25 ki te 75\sqrt{889}.
x=\frac{3\sqrt{889}+1}{200}
Whakawehe 25+75\sqrt{889} ki te 5000.
x=\frac{25-75\sqrt{889}}{5000}
Nā, me whakaoti te whārite x=\frac{25±75\sqrt{889}}{5000} ina he tango te ±. Tango 75\sqrt{889} mai i 25.
x=\frac{1-3\sqrt{889}}{200}
Whakawehe 25-75\sqrt{889} ki te 5000.
x=\frac{3\sqrt{889}+1}{200} x=\frac{1-3\sqrt{889}}{200}
Kua oti te whārite te whakatau.
\left(-50\right)^{2}x^{2}-25x-500=0
Whakarohaina te \left(-50x\right)^{2}.
2500x^{2}-25x-500=0
Tātaihia te -50 mā te pū o 2, kia riro ko 2500.
2500x^{2}-25x=500
Me tāpiri te 500 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{2500x^{2}-25x}{2500}=\frac{500}{2500}
Whakawehea ngā taha e rua ki te 2500.
x^{2}+\left(-\frac{25}{2500}\right)x=\frac{500}{2500}
Mā te whakawehe ki te 2500 ka wetekia te whakareanga ki te 2500.
x^{2}-\frac{1}{100}x=\frac{500}{2500}
Whakahekea te hautanga \frac{-25}{2500} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
x^{2}-\frac{1}{100}x=\frac{1}{5}
Whakahekea te hautanga \frac{500}{2500} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 500.
x^{2}-\frac{1}{100}x+\left(-\frac{1}{200}\right)^{2}=\frac{1}{5}+\left(-\frac{1}{200}\right)^{2}
Whakawehea te -\frac{1}{100}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{200}. Nā, tāpiria te pūrua o te -\frac{1}{200} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{100}x+\frac{1}{40000}=\frac{1}{5}+\frac{1}{40000}
Pūruatia -\frac{1}{200} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{100}x+\frac{1}{40000}=\frac{8001}{40000}
Tāpiri \frac{1}{5} ki te \frac{1}{40000} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{200}\right)^{2}=\frac{8001}{40000}
Tauwehea x^{2}-\frac{1}{100}x+\frac{1}{40000}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{200}\right)^{2}}=\sqrt{\frac{8001}{40000}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{200}=\frac{3\sqrt{889}}{200} x-\frac{1}{200}=-\frac{3\sqrt{889}}{200}
Whakarūnātia.
x=\frac{3\sqrt{889}+1}{200} x=\frac{1-3\sqrt{889}}{200}
Me tāpiri \frac{1}{200} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}