Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}+32x+64=-8x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-2x-8\right)^{2}.
4x^{2}+32x+64+8x=0
Me tāpiri te 8x ki ngā taha e rua.
4x^{2}+40x+64=0
Pahekotia te 32x me 8x, ka 40x.
x^{2}+10x+16=0
Whakawehea ngā taha e rua ki te 4.
a+b=10 ab=1\times 16=16
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+16. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,16 2,8 4,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 16.
1+16=17 2+8=10 4+4=8
Tātaihia te tapeke mō ia takirua.
a=2 b=8
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(x^{2}+2x\right)+\left(8x+16\right)
Tuhia anō te x^{2}+10x+16 hei \left(x^{2}+2x\right)+\left(8x+16\right).
x\left(x+2\right)+8\left(x+2\right)
Tauwehea te x i te tuatahi me te 8 i te rōpū tuarua.
\left(x+2\right)\left(x+8\right)
Whakatauwehea atu te kīanga pātahi x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-2 x=-8
Hei kimi otinga whārite, me whakaoti te x+2=0 me te x+8=0.
4x^{2}+32x+64=-8x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-2x-8\right)^{2}.
4x^{2}+32x+64+8x=0
Me tāpiri te 8x ki ngā taha e rua.
4x^{2}+40x+64=0
Pahekotia te 32x me 8x, ka 40x.
x=\frac{-40±\sqrt{40^{2}-4\times 4\times 64}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 40 mō b, me 64 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\times 4\times 64}}{2\times 4}
Pūrua 40.
x=\frac{-40±\sqrt{1600-16\times 64}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-40±\sqrt{1600-1024}}{2\times 4}
Whakareatia -16 ki te 64.
x=\frac{-40±\sqrt{576}}{2\times 4}
Tāpiri 1600 ki te -1024.
x=\frac{-40±24}{2\times 4}
Tuhia te pūtakerua o te 576.
x=\frac{-40±24}{8}
Whakareatia 2 ki te 4.
x=-\frac{16}{8}
Nā, me whakaoti te whārite x=\frac{-40±24}{8} ina he tāpiri te ±. Tāpiri -40 ki te 24.
x=-2
Whakawehe -16 ki te 8.
x=-\frac{64}{8}
Nā, me whakaoti te whārite x=\frac{-40±24}{8} ina he tango te ±. Tango 24 mai i -40.
x=-8
Whakawehe -64 ki te 8.
x=-2 x=-8
Kua oti te whārite te whakatau.
4x^{2}+32x+64=-8x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-2x-8\right)^{2}.
4x^{2}+32x+64+8x=0
Me tāpiri te 8x ki ngā taha e rua.
4x^{2}+40x+64=0
Pahekotia te 32x me 8x, ka 40x.
4x^{2}+40x=-64
Tangohia te 64 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{4x^{2}+40x}{4}=-\frac{64}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{40}{4}x=-\frac{64}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+10x=-\frac{64}{4}
Whakawehe 40 ki te 4.
x^{2}+10x=-16
Whakawehe -64 ki te 4.
x^{2}+10x+5^{2}=-16+5^{2}
Whakawehea te 10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 5. Nā, tāpiria te pūrua o te 5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+10x+25=-16+25
Pūrua 5.
x^{2}+10x+25=9
Tāpiri -16 ki te 25.
\left(x+5\right)^{2}=9
Tauwehea x^{2}+10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+5=3 x+5=-3
Whakarūnātia.
x=-2 x=-8
Me tango 5 mai i ngā taha e rua o te whārite.