Aromātai
12
Tauwehe
2^{2}\times 3
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
{ \left(-2 \sqrt{ 7 } \right) }^{ 2 } -4 \times 4 \times 1=
Tohaina
Kua tāruatia ki te papatopenga
\left(-2\right)^{2}\left(\sqrt{7}\right)^{2}-4\times 4\times 1
Whakarohaina te \left(-2\sqrt{7}\right)^{2}.
4\left(\sqrt{7}\right)^{2}-4\times 4\times 1
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
4\times 7-4\times 4\times 1
Ko te pūrua o \sqrt{7} ko 7.
28-4\times 4\times 1
Whakareatia te 4 ki te 7, ka 28.
28-16\times 1
Whakareatia te 4 ki te 4, ka 16.
28-16
Whakareatia te 16 ki te 1, ka 16.
12
Tangohia te 16 i te 28, ka 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}