Aromātai
\frac{x^{8}}{3125}
Kimi Pārōnaki e ai ki x
\frac{8x^{7}}{3125}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{1}\left(x^{4}\right)^{\frac{1}{2}}\left(x\times \frac{1}{5}\right)^{5}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te \frac{1}{3} kia riro ai te 1.
x^{1}x^{2}\left(x\times \frac{1}{5}\right)^{5}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te \frac{1}{2} kia riro ai te 2.
x^{3}\left(x\times \frac{1}{5}\right)^{5}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
x^{3}x^{5}\times \left(\frac{1}{5}\right)^{5}
Whakarohaina te \left(x\times \frac{1}{5}\right)^{5}.
x^{3}x^{5}\times \frac{1}{3125}
Tātaihia te \frac{1}{5} mā te pū o 5, kia riro ko \frac{1}{3125}.
x^{8}\times \frac{1}{3125}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 5 kia riro ai te 8.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}\left(x^{4}\right)^{\frac{1}{2}}\left(x\times \frac{1}{5}\right)^{5})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te \frac{1}{3} kia riro ai te 1.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}x^{2}\left(x\times \frac{1}{5}\right)^{5})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te \frac{1}{2} kia riro ai te 2.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}\left(x\times \frac{1}{5}\right)^{5})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}x^{5}\times \left(\frac{1}{5}\right)^{5})
Whakarohaina te \left(x\times \frac{1}{5}\right)^{5}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}x^{5}\times \frac{1}{3125})
Tātaihia te \frac{1}{5} mā te pū o 5, kia riro ko \frac{1}{3125}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{8}\times \frac{1}{3125})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 5 kia riro ai te 8.
8\times \frac{1}{3125}x^{8-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{8}{3125}x^{8-1}
Whakareatia 8 ki te \frac{1}{3125}.
\frac{8}{3125}x^{7}
Tango 1 mai i 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}