Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x^{-3}\right)^{2}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
x^{-3\times 2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
\frac{1}{x^{6}}
Whakareatia -3 ki te 2.
2\left(x^{-3}\right)^{2-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{-3})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
2\left(x^{-3}\right)^{1}\left(-3\right)x^{-3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-6x^{-4}\left(x^{-3}\right)^{1}
Whakarūnātia.
-6x^{-4}x^{-3}
Mō tētahi kupu t, t^{1}=t.