{ \left( { \left(- { \left( \frac{ 1 }{ 4 } { m }^{ 2 } \right) }^{ 2 } \right) }^{ } \right) }^{ 3 }
Aromātai
-\frac{m^{12}}{4096}
Whakaroha
-\frac{m^{12}}{4096}
Tohaina
Kua tāruatia ki te papatopenga
\left(\left(-\left(\frac{1}{4}\right)^{2}\left(m^{2}\right)^{2}\right)^{1}\right)^{3}
Whakarohaina te \left(\frac{1}{4}m^{2}\right)^{2}.
\left(\left(-\left(\frac{1}{4}\right)^{2}m^{4}\right)^{1}\right)^{3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\left(\left(-\frac{1}{16}m^{4}\right)^{1}\right)^{3}
Tātaihia te \frac{1}{4} mā te pū o 2, kia riro ko \frac{1}{16}.
\left(-\frac{1}{16}m^{4}\right)^{3}
Tātaihia te -\frac{1}{16}m^{4} mā te pū o 1, kia riro ko -\frac{1}{16}m^{4}.
\left(-\frac{1}{16}\right)^{3}\left(m^{4}\right)^{3}
Whakarohaina te \left(-\frac{1}{16}m^{4}\right)^{3}.
\left(-\frac{1}{16}\right)^{3}m^{12}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 3 kia riro ai te 12.
-\frac{1}{4096}m^{12}
Tātaihia te -\frac{1}{16} mā te pū o 3, kia riro ko -\frac{1}{4096}.
\left(\left(-\left(\frac{1}{4}\right)^{2}\left(m^{2}\right)^{2}\right)^{1}\right)^{3}
Whakarohaina te \left(\frac{1}{4}m^{2}\right)^{2}.
\left(\left(-\left(\frac{1}{4}\right)^{2}m^{4}\right)^{1}\right)^{3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\left(\left(-\frac{1}{16}m^{4}\right)^{1}\right)^{3}
Tātaihia te \frac{1}{4} mā te pū o 2, kia riro ko \frac{1}{16}.
\left(-\frac{1}{16}m^{4}\right)^{3}
Tātaihia te -\frac{1}{16}m^{4} mā te pū o 1, kia riro ko -\frac{1}{16}m^{4}.
\left(-\frac{1}{16}\right)^{3}\left(m^{4}\right)^{3}
Whakarohaina te \left(-\frac{1}{16}m^{4}\right)^{3}.
\left(-\frac{1}{16}\right)^{3}m^{12}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 3 kia riro ai te 12.
-\frac{1}{4096}m^{12}
Tātaihia te -\frac{1}{16} mā te pū o 3, kia riro ko -\frac{1}{4096}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}