Aromātai
\sqrt{2}+8\approx 9.414213562
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{6}+\sqrt{2}\right)^{2}.
6+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
Ko te pūrua o \sqrt{6} ko 6.
6+2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
6+2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
6+4\sqrt{3}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
Whakareatia te 2 ki te 2, ka 4.
6+4\sqrt{3}+2-2\sqrt{2}\sqrt{6}+\sqrt{2}
Ko te pūrua o \sqrt{2} ko 2.
8+4\sqrt{3}-2\sqrt{2}\sqrt{6}+\sqrt{2}
Tāpirihia te 6 ki te 2, ka 8.
8+4\sqrt{3}-2\sqrt{2}\sqrt{2}\sqrt{3}+\sqrt{2}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
8+4\sqrt{3}-2\times 2\sqrt{3}+\sqrt{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
8+4\sqrt{3}-4\sqrt{3}+\sqrt{2}
Whakareatia te 2 ki te 2, ka 4.
8+\sqrt{2}
Pahekotia te 4\sqrt{3} me -4\sqrt{3}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}