Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{6}+\sqrt{2}\right)^{2}.
6+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
Ko te pūrua o \sqrt{6} ko 6.
6+2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
6+2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
6+4\sqrt{3}+\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{6}+\sqrt{2}
Whakareatia te 2 ki te 2, ka 4.
6+4\sqrt{3}+2-2\sqrt{2}\sqrt{6}+\sqrt{2}
Ko te pūrua o \sqrt{2} ko 2.
8+4\sqrt{3}-2\sqrt{2}\sqrt{6}+\sqrt{2}
Tāpirihia te 6 ki te 2, ka 8.
8+4\sqrt{3}-2\sqrt{2}\sqrt{2}\sqrt{3}+\sqrt{2}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
8+4\sqrt{3}-2\times 2\sqrt{3}+\sqrt{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
8+4\sqrt{3}-4\sqrt{3}+\sqrt{2}
Whakareatia te 2 ki te 2, ka 4.
8+\sqrt{2}
Pahekotia te 4\sqrt{3} me -4\sqrt{3}, ka 0.