Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{3}\right)^{2}+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{3}+\sqrt{2}\right)^{2}.
3+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
3+2\sqrt{6}+\left(\sqrt{2}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
3+2\sqrt{6}+2
Ko te pūrua o \sqrt{2} ko 2.
5+2\sqrt{6}
Tāpirihia te 3 ki te 2, ka 5.
\left(\sqrt{3}\right)^{2}+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{3}+\sqrt{2}\right)^{2}.
3+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
3+2\sqrt{6}+\left(\sqrt{2}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
3+2\sqrt{6}+2
Ko te pūrua o \sqrt{2} ko 2.
5+2\sqrt{6}
Tāpirihia te 3 ki te 2, ka 5.