Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}-2\times 3\sqrt{\frac{1}{3}}\sqrt{12}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{2}-\sqrt{3}\right)^{2}.
2-2\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}-2\times 3\sqrt{\frac{1}{3}}\sqrt{12}
Ko te pūrua o \sqrt{2} ko 2.
2-2\sqrt{6}+\left(\sqrt{3}\right)^{2}-2\times 3\sqrt{\frac{1}{3}}\sqrt{12}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
2-2\sqrt{6}+3-2\times 3\sqrt{\frac{1}{3}}\sqrt{12}
Ko te pūrua o \sqrt{3} ko 3.
5-2\sqrt{6}-2\times 3\sqrt{\frac{1}{3}}\sqrt{12}
Tāpirihia te 2 ki te 3, ka 5.
5-2\sqrt{6}-6\sqrt{\frac{1}{3}}\sqrt{12}
Whakareatia te 2 ki te 3, ka 6.
5-2\sqrt{6}-6\times \frac{\sqrt{1}}{\sqrt{3}}\sqrt{12}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{3}}.
5-2\sqrt{6}-6\times \frac{1}{\sqrt{3}}\sqrt{12}
Tātaitia te pūtakerua o 1 kia tae ki 1.
5-2\sqrt{6}-6\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\sqrt{12}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
5-2\sqrt{6}-6\times \frac{\sqrt{3}}{3}\sqrt{12}
Ko te pūrua o \sqrt{3} ko 3.
5-2\sqrt{6}-6\times \frac{\sqrt{3}}{3}\times 2\sqrt{3}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
5-2\sqrt{6}-12\times \frac{\sqrt{3}}{3}\sqrt{3}
Whakareatia te 6 ki te 2, ka 12.
5-2\sqrt{6}-4\sqrt{3}\sqrt{3}
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 12 me te 3.
5-2\sqrt{6}-4\times 3
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
5-2\sqrt{6}-12
Whakareatia te 4 ki te 3, ka 12.
-7-2\sqrt{6}
Tangohia te 12 i te 5, ka -7.