Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{13}\right)^{2}-2\sqrt{13}\sqrt{11}+\left(\sqrt{11}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{13}-\sqrt{11}\right)^{2}.
13-2\sqrt{13}\sqrt{11}+\left(\sqrt{11}\right)^{2}
Ko te pūrua o \sqrt{13} ko 13.
13-2\sqrt{143}+\left(\sqrt{11}\right)^{2}
Hei whakarea \sqrt{13} me \sqrt{11}, whakareatia ngā tau i raro i te pūtake rua.
13-2\sqrt{143}+11
Ko te pūrua o \sqrt{11} ko 11.
24-2\sqrt{143}
Tāpirihia te 13 ki te 11, ka 24.
\left(\sqrt{13}\right)^{2}-2\sqrt{13}\sqrt{11}+\left(\sqrt{11}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{13}-\sqrt{11}\right)^{2}.
13-2\sqrt{13}\sqrt{11}+\left(\sqrt{11}\right)^{2}
Ko te pūrua o \sqrt{13} ko 13.
13-2\sqrt{143}+\left(\sqrt{11}\right)^{2}
Hei whakarea \sqrt{13} me \sqrt{11}, whakareatia ngā tau i raro i te pūtake rua.
13-2\sqrt{143}+11
Ko te pūrua o \sqrt{11} ko 11.
24-2\sqrt{143}
Tāpirihia te 13 ki te 11, ka 24.