Aromātai
\frac{5}{4}=1.25
Tauwehe
\frac{5}{2 ^ {2}} = 1\frac{1}{4} = 1.25
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\frac{1}{2}+\frac{3}{9}\right)^{2}}{\left(\frac{15}{9}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Whakahekea te hautanga \frac{5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\left(\frac{1}{2}+\frac{1}{3}\right)^{2}}{\left(\frac{15}{9}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Whakahekea te hautanga \frac{3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\left(\frac{5}{6}\right)^{2}}{\left(\frac{15}{9}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Tāpirihia te \frac{1}{2} ki te \frac{1}{3}, ka \frac{5}{6}.
\frac{\frac{25}{36}}{\left(\frac{15}{9}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Tātaihia te \frac{5}{6} mā te pū o 2, kia riro ko \frac{25}{36}.
\frac{\frac{25}{36}}{\left(\frac{5}{3}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Whakahekea te hautanga \frac{15}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\frac{25}{36}}{\frac{25}{9}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Tātaihia te \frac{5}{3} mā te pū o 2, kia riro ko \frac{25}{9}.
\frac{25}{36}\times \frac{9}{25}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Whakawehe \frac{25}{36} ki te \frac{25}{9} mā te whakarea \frac{25}{36} ki te tau huripoki o \frac{25}{9}.
\frac{1}{4}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Whakareatia te \frac{25}{36} ki te \frac{9}{25}, ka \frac{1}{4}.
\frac{1}{4}+\lceil \left(\frac{7\times 90}{10\times 84}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Whakawehe \frac{7}{10} ki te \frac{84}{90} mā te whakarea \frac{7}{10} ki te tau huripoki o \frac{84}{90}.
\frac{1}{4}+\lceil \left(\frac{3}{4}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Me whakakore tahi te 3\times 7\times 10 i te taurunga me te tauraro.
\frac{1}{4}+\lceil \left(\frac{3}{4}+\frac{24\times 9}{9\times 4}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Whakawehe \frac{24}{9} ki te \frac{4}{9} mā te whakarea \frac{24}{9} ki te tau huripoki o \frac{4}{9}.
\frac{1}{4}+\lceil \left(\frac{3}{4}+2\times 3\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Me whakakore tahi te 3\times 3\times 4 i te taurunga me te tauraro.
\frac{1}{4}+\lceil \left(\frac{3}{4}+6\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Whakareatia te 2 ki te 3, ka 6.
\frac{1}{4}+\lceil \frac{27}{4}\times \frac{2}{27}+\frac{5}{12}\rceil
Tāpirihia te \frac{3}{4} ki te 6, ka \frac{27}{4}.
\frac{1}{4}+\lceil \frac{1}{2}+\frac{5}{12}\rceil
Whakareatia te \frac{27}{4} ki te \frac{2}{27}, ka \frac{1}{2}.
\frac{1}{4}+\lceil \frac{11}{12}\rceil
Tāpirihia te \frac{1}{2} ki te \frac{5}{12}, ka \frac{11}{12}.
\frac{1}{4}+\lceil 0+\frac{11}{12}\rceil
Ka ritua te 11 mā te 12 ka puta ko 0 me te toenga 11. Tuhia anō te \frac{11}{12} hei 0+\frac{11}{12}.
\frac{1}{4}+1
Ko te tuanui o tētahi tau tūturu a ko te tau tōpū tino iti rawa he nui ake, he ōrite rānei ki a. Ko te tuanui o 0+\frac{11}{12} ko 1.
\frac{5}{4}
Tāpirihia te \frac{1}{4} ki te 1, ka \frac{5}{4}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}