Manatoko
teka
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
{ \left( \frac{ 3 }{ 2 } \right) }^{ 2 } +3 \frac{ 3 }{ 2 } = 2
Tohaina
Kua tāruatia ki te papatopenga
2\times \left(\frac{3}{2}\right)^{2}+3\times 2+3=4
Whakareatia ngā taha e rua o te whārite ki te 2.
2\times \frac{9}{4}+3\times 2+3=4
Tātaihia te \frac{3}{2} mā te pū o 2, kia riro ko \frac{9}{4}.
\frac{2\times 9}{4}+3\times 2+3=4
Tuhia te 2\times \frac{9}{4} hei hautanga kotahi.
\frac{18}{4}+3\times 2+3=4
Whakareatia te 2 ki te 9, ka 18.
\frac{9}{2}+3\times 2+3=4
Whakahekea te hautanga \frac{18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{9}{2}+6+3=4
Whakareatia te 3 ki te 2, ka 6.
\frac{9}{2}+\frac{12}{2}+3=4
Me tahuri te 6 ki te hautau \frac{12}{2}.
\frac{9+12}{2}+3=4
Tā te mea he rite te tauraro o \frac{9}{2} me \frac{12}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{21}{2}+3=4
Tāpirihia te 9 ki te 12, ka 21.
\frac{21}{2}+\frac{6}{2}=4
Me tahuri te 3 ki te hautau \frac{6}{2}.
\frac{21+6}{2}=4
Tā te mea he rite te tauraro o \frac{21}{2} me \frac{6}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{27}{2}=4
Tāpirihia te 21 ki te 6, ka 27.
\frac{27}{2}=\frac{8}{2}
Me tahuri te 4 ki te hautau \frac{8}{2}.
\text{false}
Whakatauritea te \frac{27}{2} me te \frac{8}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}