Whakaoti mō x
x = \frac{21590 \sqrt{89}}{89} \approx 2288.535422934
x = -\frac{21590 \sqrt{89}}{89} \approx -2288.535422934
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{8}{5}x\right)^{2}+x^{2}=4318^{2}
Whakawehea te 16x ki te 10, kia riro ko \frac{8}{5}x.
\left(\frac{8}{5}\right)^{2}x^{2}+x^{2}=4318^{2}
Whakarohaina te \left(\frac{8}{5}x\right)^{2}.
\frac{64}{25}x^{2}+x^{2}=4318^{2}
Tātaihia te \frac{8}{5} mā te pū o 2, kia riro ko \frac{64}{25}.
\frac{89}{25}x^{2}=4318^{2}
Pahekotia te \frac{64}{25}x^{2} me x^{2}, ka \frac{89}{25}x^{2}.
\frac{89}{25}x^{2}=18645124
Tātaihia te 4318 mā te pū o 2, kia riro ko 18645124.
x^{2}=18645124\times \frac{25}{89}
Me whakarea ngā taha e rua ki te \frac{25}{89}, te tau utu o \frac{89}{25}.
x^{2}=\frac{466128100}{89}
Whakareatia te 18645124 ki te \frac{25}{89}, ka \frac{466128100}{89}.
x=\frac{21590\sqrt{89}}{89} x=-\frac{21590\sqrt{89}}{89}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\left(\frac{8}{5}x\right)^{2}+x^{2}=4318^{2}
Whakawehea te 16x ki te 10, kia riro ko \frac{8}{5}x.
\left(\frac{8}{5}\right)^{2}x^{2}+x^{2}=4318^{2}
Whakarohaina te \left(\frac{8}{5}x\right)^{2}.
\frac{64}{25}x^{2}+x^{2}=4318^{2}
Tātaihia te \frac{8}{5} mā te pū o 2, kia riro ko \frac{64}{25}.
\frac{89}{25}x^{2}=4318^{2}
Pahekotia te \frac{64}{25}x^{2} me x^{2}, ka \frac{89}{25}x^{2}.
\frac{89}{25}x^{2}=18645124
Tātaihia te 4318 mā te pū o 2, kia riro ko 18645124.
\frac{89}{25}x^{2}-18645124=0
Tangohia te 18645124 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times \frac{89}{25}\left(-18645124\right)}}{2\times \frac{89}{25}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{89}{25} mō a, 0 mō b, me -18645124 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{89}{25}\left(-18645124\right)}}{2\times \frac{89}{25}}
Pūrua 0.
x=\frac{0±\sqrt{-\frac{356}{25}\left(-18645124\right)}}{2\times \frac{89}{25}}
Whakareatia -4 ki te \frac{89}{25}.
x=\frac{0±\sqrt{\frac{6637664144}{25}}}{2\times \frac{89}{25}}
Whakareatia -\frac{356}{25} ki te -18645124.
x=\frac{0±\frac{8636\sqrt{89}}{5}}{2\times \frac{89}{25}}
Tuhia te pūtakerua o te \frac{6637664144}{25}.
x=\frac{0±\frac{8636\sqrt{89}}{5}}{\frac{178}{25}}
Whakareatia 2 ki te \frac{89}{25}.
x=\frac{21590\sqrt{89}}{89}
Nā, me whakaoti te whārite x=\frac{0±\frac{8636\sqrt{89}}{5}}{\frac{178}{25}} ina he tāpiri te ±.
x=-\frac{21590\sqrt{89}}{89}
Nā, me whakaoti te whārite x=\frac{0±\frac{8636\sqrt{89}}{5}}{\frac{178}{25}} ina he tango te ±.
x=\frac{21590\sqrt{89}}{89} x=-\frac{21590\sqrt{89}}{89}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}