Whakaoti mō x
x=40
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{1}{4}\right)^{2}x^{2}+\left(\frac{80}{4}-\frac{1}{4}x\right)^{2}=200
Whakarohaina te \left(\frac{1}{4}x\right)^{2}.
\frac{1}{16}x^{2}+\left(\frac{80}{4}-\frac{1}{4}x\right)^{2}=200
Tātaihia te \frac{1}{4} mā te pū o 2, kia riro ko \frac{1}{16}.
\frac{1}{16}x^{2}+\left(20-\frac{1}{4}x\right)^{2}=200
Whakawehea te 80 ki te 4, kia riro ko 20.
\frac{1}{16}x^{2}+400-10x+\frac{1}{16}x^{2}=200
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(20-\frac{1}{4}x\right)^{2}.
\frac{1}{8}x^{2}+400-10x=200
Pahekotia te \frac{1}{16}x^{2} me \frac{1}{16}x^{2}, ka \frac{1}{8}x^{2}.
\frac{1}{8}x^{2}+400-10x-200=0
Tangohia te 200 mai i ngā taha e rua.
\frac{1}{8}x^{2}+200-10x=0
Tangohia te 200 i te 400, ka 200.
\frac{1}{8}x^{2}-10x+200=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times \frac{1}{8}\times 200}}{2\times \frac{1}{8}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{8} mō a, -10 mō b, me 200 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times \frac{1}{8}\times 200}}{2\times \frac{1}{8}}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-\frac{1}{2}\times 200}}{2\times \frac{1}{8}}
Whakareatia -4 ki te \frac{1}{8}.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2\times \frac{1}{8}}
Whakareatia -\frac{1}{2} ki te 200.
x=\frac{-\left(-10\right)±\sqrt{0}}{2\times \frac{1}{8}}
Tāpiri 100 ki te -100.
x=-\frac{-10}{2\times \frac{1}{8}}
Tuhia te pūtakerua o te 0.
x=\frac{10}{2\times \frac{1}{8}}
Ko te tauaro o -10 ko 10.
x=\frac{10}{\frac{1}{4}}
Whakareatia 2 ki te \frac{1}{8}.
x=40
Whakawehe 10 ki te \frac{1}{4} mā te whakarea 10 ki te tau huripoki o \frac{1}{4}.
\left(\frac{1}{4}\right)^{2}x^{2}+\left(\frac{80}{4}-\frac{1}{4}x\right)^{2}=200
Whakarohaina te \left(\frac{1}{4}x\right)^{2}.
\frac{1}{16}x^{2}+\left(\frac{80}{4}-\frac{1}{4}x\right)^{2}=200
Tātaihia te \frac{1}{4} mā te pū o 2, kia riro ko \frac{1}{16}.
\frac{1}{16}x^{2}+\left(20-\frac{1}{4}x\right)^{2}=200
Whakawehea te 80 ki te 4, kia riro ko 20.
\frac{1}{16}x^{2}+400-10x+\frac{1}{16}x^{2}=200
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(20-\frac{1}{4}x\right)^{2}.
\frac{1}{8}x^{2}+400-10x=200
Pahekotia te \frac{1}{16}x^{2} me \frac{1}{16}x^{2}, ka \frac{1}{8}x^{2}.
\frac{1}{8}x^{2}-10x=200-400
Tangohia te 400 mai i ngā taha e rua.
\frac{1}{8}x^{2}-10x=-200
Tangohia te 400 i te 200, ka -200.
\frac{\frac{1}{8}x^{2}-10x}{\frac{1}{8}}=-\frac{200}{\frac{1}{8}}
Me whakarea ngā taha e rua ki te 8.
x^{2}+\left(-\frac{10}{\frac{1}{8}}\right)x=-\frac{200}{\frac{1}{8}}
Mā te whakawehe ki te \frac{1}{8} ka wetekia te whakareanga ki te \frac{1}{8}.
x^{2}-80x=-\frac{200}{\frac{1}{8}}
Whakawehe -10 ki te \frac{1}{8} mā te whakarea -10 ki te tau huripoki o \frac{1}{8}.
x^{2}-80x=-1600
Whakawehe -200 ki te \frac{1}{8} mā te whakarea -200 ki te tau huripoki o \frac{1}{8}.
x^{2}-80x+\left(-40\right)^{2}=-1600+\left(-40\right)^{2}
Whakawehea te -80, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -40. Nā, tāpiria te pūrua o te -40 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-80x+1600=-1600+1600
Pūrua -40.
x^{2}-80x+1600=0
Tāpiri -1600 ki te 1600.
\left(x-40\right)^{2}=0
Tauwehea x^{2}-80x+1600. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-40\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-40=0 x-40=0
Whakarūnātia.
x=40 x=40
Me tāpiri 40 ki ngā taha e rua o te whārite.
x=40
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}