Aromātai
-\frac{15}{128}=-0.1171875
Tauwehe
-\frac{15}{128} = -0.1171875
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}\left(\left(\frac{1}{2}\right)^{2}-\frac{1}{2}+1\right)\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{1}{4}\left(\frac{1}{4}-\frac{1}{2}+1\right)\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{1}{4}\left(\frac{1}{4}-\frac{2}{4}+1\right)\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
Ko te maha noa iti rawa atu o 4 me 2 ko 4. Me tahuri \frac{1}{4} me \frac{1}{2} ki te hautau me te tautūnga 4.
\frac{1}{4}\left(\frac{1-2}{4}+1\right)\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
Tā te mea he rite te tauraro o \frac{1}{4} me \frac{2}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{4}\left(-\frac{1}{4}+1\right)\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
Tangohia te 2 i te 1, ka -1.
\frac{1}{4}\left(-\frac{1}{4}+\frac{4}{4}\right)\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{1}{4}\times \frac{-1+4}{4}\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
Tā te mea he rite te tauraro o -\frac{1}{4} me \frac{4}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{4}\times \frac{3}{4}\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
Tāpirihia te -1 ki te 4, ka 3.
\frac{1\times 3}{4\times 4}\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
Me whakarea te \frac{1}{4} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{16}\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{4\times 4}.
\frac{3}{16}\left(\frac{1}{8}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
Tātaihia te \frac{1}{2} mā te pū o 3, kia riro ko \frac{1}{8}.
\frac{3}{16}\left(\frac{1}{8}-\frac{1}{4}+\frac{1}{2}-1\right)
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{3}{16}\left(\frac{1}{8}-\frac{2}{8}+\frac{1}{2}-1\right)
Ko te maha noa iti rawa atu o 8 me 4 ko 8. Me tahuri \frac{1}{8} me \frac{1}{4} ki te hautau me te tautūnga 8.
\frac{3}{16}\left(\frac{1-2}{8}+\frac{1}{2}-1\right)
Tā te mea he rite te tauraro o \frac{1}{8} me \frac{2}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{16}\left(-\frac{1}{8}+\frac{1}{2}-1\right)
Tangohia te 2 i te 1, ka -1.
\frac{3}{16}\left(-\frac{1}{8}+\frac{4}{8}-1\right)
Ko te maha noa iti rawa atu o 8 me 2 ko 8. Me tahuri -\frac{1}{8} me \frac{1}{2} ki te hautau me te tautūnga 8.
\frac{3}{16}\left(\frac{-1+4}{8}-1\right)
Tā te mea he rite te tauraro o -\frac{1}{8} me \frac{4}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{16}\left(\frac{3}{8}-1\right)
Tāpirihia te -1 ki te 4, ka 3.
\frac{3}{16}\left(\frac{3}{8}-\frac{8}{8}\right)
Me tahuri te 1 ki te hautau \frac{8}{8}.
\frac{3}{16}\times \frac{3-8}{8}
Tā te mea he rite te tauraro o \frac{3}{8} me \frac{8}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{16}\left(-\frac{5}{8}\right)
Tangohia te 8 i te 3, ka -5.
\frac{3\left(-5\right)}{16\times 8}
Me whakarea te \frac{3}{16} ki te -\frac{5}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-15}{128}
Mahia ngā whakarea i roto i te hautanga \frac{3\left(-5\right)}{16\times 8}.
-\frac{15}{128}
Ka taea te hautanga \frac{-15}{128} te tuhi anō ko -\frac{15}{128} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}