Aromātai
\frac{\left(xy\right)^{3}}{z^{2}}
Whakaroha
\frac{\left(xy\right)^{3}}{z^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(x^{2}y\right)^{3}}{z^{3}}\times \frac{z}{x^{3}}
Kia whakarewa i te \frac{x^{2}y}{z} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(x^{2}y\right)^{3}z}{z^{3}x^{3}}
Me whakarea te \frac{\left(x^{2}y\right)^{3}}{z^{3}} ki te \frac{z}{x^{3}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(yx^{2}\right)^{3}}{z^{2}x^{3}}
Me whakakore tahi te z i te taurunga me te tauraro.
\frac{y^{3}\left(x^{2}\right)^{3}}{z^{2}x^{3}}
Whakarohaina te \left(yx^{2}\right)^{3}.
\frac{y^{3}x^{6}}{z^{2}x^{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{x^{3}y^{3}}{z^{2}}
Me whakakore tahi te x^{3} i te taurunga me te tauraro.
\frac{\left(x^{2}y\right)^{3}}{z^{3}}\times \frac{z}{x^{3}}
Kia whakarewa i te \frac{x^{2}y}{z} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(x^{2}y\right)^{3}z}{z^{3}x^{3}}
Me whakarea te \frac{\left(x^{2}y\right)^{3}}{z^{3}} ki te \frac{z}{x^{3}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(yx^{2}\right)^{3}}{z^{2}x^{3}}
Me whakakore tahi te z i te taurunga me te tauraro.
\frac{y^{3}\left(x^{2}\right)^{3}}{z^{2}x^{3}}
Whakarohaina te \left(yx^{2}\right)^{3}.
\frac{y^{3}x^{6}}{z^{2}x^{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{x^{3}y^{3}}{z^{2}}
Me whakakore tahi te x^{3} i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}