Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\left(\frac{\sqrt{2}}{2}\right)^{2}-\frac{1}{2}\tan(45)+\tan(30)
Tīkina te uara \cos(45) mai i te ripanga uara pākoki.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{1}{2}\tan(45)+\tan(30)
Kia whakarewa i te \frac{\sqrt{2}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{1}{2}\times 1+\tan(30)
Tīkina te uara \tan(45) mai i te ripanga uara pākoki.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{1}{2}+\tan(30)
Whakareatia te \frac{1}{2} ki te 1, ka \frac{1}{2}.
\frac{\left(\sqrt{2}\right)^{2}}{4}-\frac{2}{4}+\tan(30)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2^{2} me 2 ko 4. Whakareatia \frac{1}{2} ki te \frac{2}{2}.
\frac{\left(\sqrt{2}\right)^{2}-2}{4}+\tan(30)
Tā te mea he rite te tauraro o \frac{\left(\sqrt{2}\right)^{2}}{4} me \frac{2}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(\sqrt{2}\right)^{2}-2}{4}+\frac{\sqrt{3}}{3}
Tīkina te uara \tan(30) mai i te ripanga uara pākoki.
\frac{3\left(\left(\sqrt{2}\right)^{2}-2\right)}{12}+\frac{4\sqrt{3}}{12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 3 ko 12. Whakareatia \frac{\left(\sqrt{2}\right)^{2}-2}{4} ki te \frac{3}{3}. Whakareatia \frac{\sqrt{3}}{3} ki te \frac{4}{4}.
\frac{3\left(\left(\sqrt{2}\right)^{2}-2\right)+4\sqrt{3}}{12}
Tā te mea he rite te tauraro o \frac{3\left(\left(\sqrt{2}\right)^{2}-2\right)}{12} me \frac{4\sqrt{3}}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2-2}{4}+\frac{\sqrt{3}}{3}
Ko te pūrua o \sqrt{2} ko 2.
\frac{0}{4}+\frac{\sqrt{3}}{3}
Tangohia te 2 i te 2, ka 0.
0+\frac{\sqrt{3}}{3}
Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
\frac{\sqrt{3}}{3}
Ko te tau i tāpiria he kore ka hua koia tonu.