Tīpoka ki ngā ihirangi matua
Whakaoti mō u
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

u^{2}+2u+1=2u^{2}+5u+3
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(u+1\right)^{2}.
u^{2}+2u+1-2u^{2}=5u+3
Tangohia te 2u^{2} mai i ngā taha e rua.
-u^{2}+2u+1=5u+3
Pahekotia te u^{2} me -2u^{2}, ka -u^{2}.
-u^{2}+2u+1-5u=3
Tangohia te 5u mai i ngā taha e rua.
-u^{2}-3u+1=3
Pahekotia te 2u me -5u, ka -3u.
-u^{2}-3u+1-3=0
Tangohia te 3 mai i ngā taha e rua.
-u^{2}-3u-2=0
Tangohia te 3 i te 1, ka -2.
a+b=-3 ab=-\left(-2\right)=2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -u^{2}+au+bu-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-u^{2}-u\right)+\left(-2u-2\right)
Tuhia anō te -u^{2}-3u-2 hei \left(-u^{2}-u\right)+\left(-2u-2\right).
u\left(-u-1\right)+2\left(-u-1\right)
Tauwehea te u i te tuatahi me te 2 i te rōpū tuarua.
\left(-u-1\right)\left(u+2\right)
Whakatauwehea atu te kīanga pātahi -u-1 mā te whakamahi i te āhuatanga tātai tohatoha.
u=-1 u=-2
Hei kimi otinga whārite, me whakaoti te -u-1=0 me te u+2=0.
u^{2}+2u+1=2u^{2}+5u+3
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(u+1\right)^{2}.
u^{2}+2u+1-2u^{2}=5u+3
Tangohia te 2u^{2} mai i ngā taha e rua.
-u^{2}+2u+1=5u+3
Pahekotia te u^{2} me -2u^{2}, ka -u^{2}.
-u^{2}+2u+1-5u=3
Tangohia te 5u mai i ngā taha e rua.
-u^{2}-3u+1=3
Pahekotia te 2u me -5u, ka -3u.
-u^{2}-3u+1-3=0
Tangohia te 3 mai i ngā taha e rua.
-u^{2}-3u-2=0
Tangohia te 3 i te 1, ka -2.
u=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -3 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Pūrua -3.
u=\frac{-\left(-3\right)±\sqrt{9+4\left(-2\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
u=\frac{-\left(-3\right)±\sqrt{9-8}}{2\left(-1\right)}
Whakareatia 4 ki te -2.
u=\frac{-\left(-3\right)±\sqrt{1}}{2\left(-1\right)}
Tāpiri 9 ki te -8.
u=\frac{-\left(-3\right)±1}{2\left(-1\right)}
Tuhia te pūtakerua o te 1.
u=\frac{3±1}{2\left(-1\right)}
Ko te tauaro o -3 ko 3.
u=\frac{3±1}{-2}
Whakareatia 2 ki te -1.
u=\frac{4}{-2}
Nā, me whakaoti te whārite u=\frac{3±1}{-2} ina he tāpiri te ±. Tāpiri 3 ki te 1.
u=-2
Whakawehe 4 ki te -2.
u=\frac{2}{-2}
Nā, me whakaoti te whārite u=\frac{3±1}{-2} ina he tango te ±. Tango 1 mai i 3.
u=-1
Whakawehe 2 ki te -2.
u=-2 u=-1
Kua oti te whārite te whakatau.
u^{2}+2u+1=2u^{2}+5u+3
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(u+1\right)^{2}.
u^{2}+2u+1-2u^{2}=5u+3
Tangohia te 2u^{2} mai i ngā taha e rua.
-u^{2}+2u+1=5u+3
Pahekotia te u^{2} me -2u^{2}, ka -u^{2}.
-u^{2}+2u+1-5u=3
Tangohia te 5u mai i ngā taha e rua.
-u^{2}-3u+1=3
Pahekotia te 2u me -5u, ka -3u.
-u^{2}-3u=3-1
Tangohia te 1 mai i ngā taha e rua.
-u^{2}-3u=2
Tangohia te 1 i te 3, ka 2.
\frac{-u^{2}-3u}{-1}=\frac{2}{-1}
Whakawehea ngā taha e rua ki te -1.
u^{2}+\left(-\frac{3}{-1}\right)u=\frac{2}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
u^{2}+3u=\frac{2}{-1}
Whakawehe -3 ki te -1.
u^{2}+3u=-2
Whakawehe 2 ki te -1.
u^{2}+3u+\left(\frac{3}{2}\right)^{2}=-2+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
u^{2}+3u+\frac{9}{4}=-2+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
u^{2}+3u+\frac{9}{4}=\frac{1}{4}
Tāpiri -2 ki te \frac{9}{4}.
\left(u+\frac{3}{2}\right)^{2}=\frac{1}{4}
Tauwehea u^{2}+3u+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u+\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
u+\frac{3}{2}=\frac{1}{2} u+\frac{3}{2}=-\frac{1}{2}
Whakarūnātia.
u=-1 u=-2
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.