Whakaoti mō E
\left\{\begin{matrix}E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }\text{, }&\sigma _{1}\neq v\left(\sigma _{2}+\sigma _{3}\right)\text{ and }\epsilon \neq 0\text{ and }\sigma _{1}\neq v\sigma _{2}+v\sigma _{3}\\E\neq 0\text{, }&\epsilon =0\text{ and }\sigma _{1}=v\left(\sigma _{2}+\sigma _{3}\right)\end{matrix}\right.
Whakaoti mō v
\left\{\begin{matrix}v=\frac{\pi \sigma _{1}-E\epsilon }{\pi \left(\sigma _{2}+\sigma _{3}\right)}\text{, }&E\neq 0\text{ and }\sigma _{2}\neq -\sigma _{3}\\v\in \mathrm{R}\text{, }&\sigma _{1}=\frac{E\epsilon }{\pi }\text{ and }\sigma _{2}=-\sigma _{3}\text{ and }E\neq 0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
\epsilon E=\pi \left(\sigma _{1}-v\left(\sigma _{2}+\sigma _{3}\right)\right)
Tē taea kia ōrite te tāupe E ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te E.
\epsilon E=\pi \left(\sigma _{1}-\left(v\sigma _{2}+v\sigma _{3}\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te v ki te \sigma _{2}+\sigma _{3}.
\epsilon E=\pi \left(\sigma _{1}-v\sigma _{2}-v\sigma _{3}\right)
Hei kimi i te tauaro o v\sigma _{2}+v\sigma _{3}, kimihia te tauaro o ia taurangi.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \pi ki te \sigma _{1}-v\sigma _{2}-v\sigma _{3}.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{3}-\pi v\sigma _{2}
He hanga arowhānui tō te whārite.
\frac{\epsilon E}{\epsilon }=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }
Whakawehea ngā taha e rua ki te \epsilon .
E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }
Mā te whakawehe ki te \epsilon ka wetekia te whakareanga ki te \epsilon .
E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }\text{, }E\neq 0
Tē taea kia ōrite te tāupe E ki 0.
\epsilon E=\pi \left(\sigma _{1}-v\left(\sigma _{2}+\sigma _{3}\right)\right)
Whakareatia ngā taha e rua o te whārite ki te E.
\epsilon E=\pi \left(\sigma _{1}-\left(v\sigma _{2}+v\sigma _{3}\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te v ki te \sigma _{2}+\sigma _{3}.
\epsilon E=\pi \left(\sigma _{1}-v\sigma _{2}-v\sigma _{3}\right)
Hei kimi i te tauaro o v\sigma _{2}+v\sigma _{3}, kimihia te tauaro o ia taurangi.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \pi ki te \sigma _{1}-v\sigma _{2}-v\sigma _{3}.
\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}=\epsilon E
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\pi v\sigma _{2}-\pi v\sigma _{3}=\epsilon E-\pi \sigma _{1}
Tangohia te \pi \sigma _{1} mai i ngā taha e rua.
-\pi v\sigma _{2}-\pi v\sigma _{3}=E\epsilon -\pi \sigma _{1}
Whakaraupapatia anō ngā kīanga tau.
\left(-\pi \sigma _{2}-\pi \sigma _{3}\right)v=E\epsilon -\pi \sigma _{1}
Pahekotia ngā kīanga tau katoa e whai ana i te v.
\frac{\left(-\pi \sigma _{2}-\pi \sigma _{3}\right)v}{-\pi \sigma _{2}-\pi \sigma _{3}}=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \sigma _{2}-\pi \sigma _{3}}
Whakawehea ngā taha e rua ki te -\pi \sigma _{2}-\pi \sigma _{3}.
v=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \sigma _{2}-\pi \sigma _{3}}
Mā te whakawehe ki te -\pi \sigma _{2}-\pi \sigma _{3} ka wetekia te whakareanga ki te -\pi \sigma _{2}-\pi \sigma _{3}.
v=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \left(\sigma _{2}+\sigma _{3}\right)}
Whakawehe \epsilon E-\pi \sigma _{1} ki te -\pi \sigma _{2}-\pi \sigma _{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}