Tīpoka ki ngā ihirangi matua
Whakaoti mō E
Tick mark Image
Whakaoti mō v
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\epsilon E=\pi \left(\sigma _{1}-v\left(\sigma _{2}+\sigma _{3}\right)\right)
Tē taea kia ōrite te tāupe E ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te E.
\epsilon E=\pi \left(\sigma _{1}-\left(v\sigma _{2}+v\sigma _{3}\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te v ki te \sigma _{2}+\sigma _{3}.
\epsilon E=\pi \left(\sigma _{1}-v\sigma _{2}-v\sigma _{3}\right)
Hei kimi i te tauaro o v\sigma _{2}+v\sigma _{3}, kimihia te tauaro o ia taurangi.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \pi ki te \sigma _{1}-v\sigma _{2}-v\sigma _{3}.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{3}-\pi v\sigma _{2}
He hanga arowhānui tō te whārite.
\frac{\epsilon E}{\epsilon }=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }
Whakawehea ngā taha e rua ki te \epsilon .
E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }
Mā te whakawehe ki te \epsilon ka wetekia te whakareanga ki te \epsilon .
E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }\text{, }E\neq 0
Tē taea kia ōrite te tāupe E ki 0.
\epsilon E=\pi \left(\sigma _{1}-v\left(\sigma _{2}+\sigma _{3}\right)\right)
Whakareatia ngā taha e rua o te whārite ki te E.
\epsilon E=\pi \left(\sigma _{1}-\left(v\sigma _{2}+v\sigma _{3}\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te v ki te \sigma _{2}+\sigma _{3}.
\epsilon E=\pi \left(\sigma _{1}-v\sigma _{2}-v\sigma _{3}\right)
Hei kimi i te tauaro o v\sigma _{2}+v\sigma _{3}, kimihia te tauaro o ia taurangi.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \pi ki te \sigma _{1}-v\sigma _{2}-v\sigma _{3}.
\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}=\epsilon E
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\pi v\sigma _{2}-\pi v\sigma _{3}=\epsilon E-\pi \sigma _{1}
Tangohia te \pi \sigma _{1} mai i ngā taha e rua.
-\pi v\sigma _{2}-\pi v\sigma _{3}=E\epsilon -\pi \sigma _{1}
Whakaraupapatia anō ngā kīanga tau.
\left(-\pi \sigma _{2}-\pi \sigma _{3}\right)v=E\epsilon -\pi \sigma _{1}
Pahekotia ngā kīanga tau katoa e whai ana i te v.
\frac{\left(-\pi \sigma _{2}-\pi \sigma _{3}\right)v}{-\pi \sigma _{2}-\pi \sigma _{3}}=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \sigma _{2}-\pi \sigma _{3}}
Whakawehea ngā taha e rua ki te -\pi \sigma _{2}-\pi \sigma _{3}.
v=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \sigma _{2}-\pi \sigma _{3}}
Mā te whakawehe ki te -\pi \sigma _{2}-\pi \sigma _{3} ka wetekia te whakareanga ki te -\pi \sigma _{2}-\pi \sigma _{3}.
v=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \left(\sigma _{2}+\sigma _{3}\right)}
Whakawehe \epsilon E-\pi \sigma _{1} ki te -\pi \sigma _{2}-\pi \sigma _{3}.