Whakaoti mō f_0
f_{0}=\frac{2000000000000000\theta }{1285575219373079}-\frac{12000000000000000}{14141327413103869}
Whakaoti mō θ
\theta =\frac{1285575219373079f_{0}}{2000000000000000}+\frac{6}{11}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\theta = \frac{6}{11} + f 0.6427876096865395
Evaluate trigonometric functions in the problem
\frac{6}{11}+f_{0}\times 0.6427876096865395=\theta
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
f_{0}\times 0.6427876096865395=\theta -\frac{6}{11}
Tangohia te \frac{6}{11} mai i ngā taha e rua.
0.6427876096865395f_{0}=\theta -\frac{6}{11}
He hanga arowhānui tō te whārite.
\frac{0.6427876096865395f_{0}}{0.6427876096865395}=\frac{\theta -\frac{6}{11}}{0.6427876096865395}
Whakawehea ngā taha e rua o te whārite ki te 0.6427876096865395, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
f_{0}=\frac{\theta -\frac{6}{11}}{0.6427876096865395}
Mā te whakawehe ki te 0.6427876096865395 ka wetekia te whakareanga ki te 0.6427876096865395.
f_{0}=\frac{2000000000000000\theta }{1285575219373079}-\frac{12000000000000000}{14141327413103869}
Whakawehe \theta -\frac{6}{11} ki te 0.6427876096865395 mā te whakarea \theta -\frac{6}{11} ki te tau huripoki o 0.6427876096865395.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}