Aromātai
-\frac{7e}{702}\approx -0.027105374
Whakaroha
-\frac{7e}{702}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\texttt{e} \times 136 \times (1 \div 16-1 \div 9) \div 663
Tohaina
Kua tāruatia ki te papatopenga
\frac{e\times 136\left(\frac{9}{144}-\frac{16}{144}\right)}{663}
Ko te maha noa iti rawa atu o 16 me 9 ko 144. Me tahuri \frac{1}{16} me \frac{1}{9} ki te hautau me te tautūnga 144.
\frac{e\times 136\times \frac{9-16}{144}}{663}
Tā te mea he rite te tauraro o \frac{9}{144} me \frac{16}{144}, me tango rāua mā te tango i ō raua taurunga.
\frac{e\times 136\left(-\frac{7}{144}\right)}{663}
Tangohia te 16 i te 9, ka -7.
\frac{e\times \frac{136\left(-7\right)}{144}}{663}
Tuhia te 136\left(-\frac{7}{144}\right) hei hautanga kotahi.
\frac{e\times \frac{-952}{144}}{663}
Whakareatia te 136 ki te -7, ka -952.
\frac{e\left(-\frac{119}{18}\right)}{663}
Whakahekea te hautanga \frac{-952}{144} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
e\left(-\frac{7}{702}\right)
Whakawehea te e\left(-\frac{119}{18}\right) ki te 663, kia riro ko e\left(-\frac{7}{702}\right).
\frac{e\times 136\left(\frac{9}{144}-\frac{16}{144}\right)}{663}
Ko te maha noa iti rawa atu o 16 me 9 ko 144. Me tahuri \frac{1}{16} me \frac{1}{9} ki te hautau me te tautūnga 144.
\frac{e\times 136\times \frac{9-16}{144}}{663}
Tā te mea he rite te tauraro o \frac{9}{144} me \frac{16}{144}, me tango rāua mā te tango i ō raua taurunga.
\frac{e\times 136\left(-\frac{7}{144}\right)}{663}
Tangohia te 16 i te 9, ka -7.
\frac{e\times \frac{136\left(-7\right)}{144}}{663}
Tuhia te 136\left(-\frac{7}{144}\right) hei hautanga kotahi.
\frac{e\times \frac{-952}{144}}{663}
Whakareatia te 136 ki te -7, ka -952.
\frac{e\left(-\frac{119}{18}\right)}{663}
Whakahekea te hautanga \frac{-952}{144} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
e\left(-\frac{7}{702}\right)
Whakawehea te e\left(-\frac{119}{18}\right) ki te 663, kia riro ko e\left(-\frac{7}{702}\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}