Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki t
Tick mark Image
Aromātai
Tick mark Image

Tohaina

\frac{\mathrm{d}}{\mathrm{d}t}(\frac{\sin(t)}{\cos(t)})
Whakamahia te tautuhinga o te pātapa.
\frac{\cos(t)\frac{\mathrm{d}}{\mathrm{d}t}(\sin(t))-\sin(t)\frac{\mathrm{d}}{\mathrm{d}t}(\cos(t))}{\left(\cos(t)\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\cos(t)\cos(t)-\sin(t)\left(-\sin(t)\right)}{\left(\cos(t)\right)^{2}}
Ko te pārōnaki o sin(t) ko cos(t), me te pārōnaki o cos(t) ko −sin(t).
\frac{\left(\cos(t)\right)^{2}+\left(\sin(t)\right)^{2}}{\left(\cos(t)\right)^{2}}
Whakarūnātia.
\frac{1}{\left(\cos(t)\right)^{2}}
Whakamahia te Tuakiri Pythagorean.
\left(\sec(t)\right)^{2}
Whakamahia te tautuhinga o te whenu taupoki.