Tīpoka ki ngā ihirangi matua
Whakaoti mō g (complex solution)
Tick mark Image
Whakaoti mō g
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

gx+1=\tan(2x)
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
gx=\tan(2x)-1
Tangohia te 1 mai i ngā taha e rua.
xg=\tan(2x)-1
He hanga arowhānui tō te whārite.
\frac{xg}{x}=\frac{\left(-1-i\right)e^{2ix}+\left(-1+i\right)e^{-2ix}}{2\cos(2x)x}
Whakawehea ngā taha e rua ki te x.
g=\frac{\left(-1-i\right)e^{2ix}+\left(-1+i\right)e^{-2ix}}{2\cos(2x)x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
g=\frac{\left(-1-i\right)e^{2ix}+\left(-1+i\right)e^{-2ix}}{2x\cos(2x)}
Whakawehe \frac{\left(-1-i\right)e^{2ix}+\left(-1+i\right)e^{-2ix}}{2\cos(2x)} ki te x.
gx+1=\tan(2x)
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
gx=\tan(2x)-1
Tangohia te 1 mai i ngā taha e rua.
xg=\tan(2x)-1
He hanga arowhānui tō te whārite.
\frac{xg}{x}=\frac{\sin(2x)-\cos(2x)}{\cos(2x)x}
Whakawehea ngā taha e rua ki te x.
g=\frac{\sin(2x)-\cos(2x)}{\cos(2x)x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
g=\frac{\sin(2x)-\cos(2x)}{x\cos(2x)}
Whakawehe \frac{\sin(2x)-\cos(2x)}{\cos(2x)} ki te x.