Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki θ
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}\theta }(\frac{\sin(\theta )}{\cos(\theta )})
Whakamahia te tautuhinga o te pātapa.
\frac{\cos(\theta )\frac{\mathrm{d}}{\mathrm{d}\theta }(\sin(\theta ))-\sin(\theta )\frac{\mathrm{d}}{\mathrm{d}\theta }(\cos(\theta ))}{\left(\cos(\theta )\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\cos(\theta )\cos(\theta )-\sin(\theta )\left(-\sin(\theta )\right)}{\left(\cos(\theta )\right)^{2}}
Ko te pārōnaki o sin(\theta ) ko cos(\theta ), me te pārōnaki o cos(\theta ) ko −sin(\theta ).
\frac{\left(\cos(\theta )\right)^{2}+\left(\sin(\theta )\right)^{2}}{\left(\cos(\theta )\right)^{2}}
Whakarūnātia.
\frac{1}{\left(\cos(\theta )\right)^{2}}
Whakamahia te Tuakiri Pythagorean.
\left(\sec(\theta )\right)^{2}
Whakamahia te tautuhinga o te whenu taupoki.